European Journal of Chemistry

Kinetic study on the adsorption of pollutants from olive mill wastewater onto granular activated carbon

Crossmark


Main Article Content

Mohammed Zine
Noureddine Touach
El Mostapha Lofti
Philippe Moulin

Abstract

This research aimed to examine the effect of contact time on total organic carbon (TOC) removal rates associated with adsorption of pollutants from different olive mill wastewater (OMW) samples onto activated granular activated carbon (GAC). The first sample was a raw OMW that was microfiltered through a 100 µm membrane and the second sample was an OMW’s permeate from a 50 kDa filtration. The TOC removal rate (%) of pollutants from prefiltered OMW increased over time, reaching its peak after 34 h (2040 min). Subsequently, the system reached adsorption equilibrium, corresponding to a removal rate of 60%. Then, it stabilized at this value till the end of adsorption at 48 h (2880 min). TOC removal rates (%) (corresponding to adsorption at different concentrations of GAC) of pollutants permeating 50 kDa also increased over time, reaching their peaks after 2040 minutes.  The highest TOC removal rate was around 85%. This study also investigated the kinetics associated with this adsorption. To gain a comprehensive process understanding, pseudo-first-order (PFO) and pseudo-second-order (PSO) were employed as kinetic models. The second-order model best expressed the adsorption process which achieved equilibrium within 34 h.


icon graph This Abstract was viewed 7 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
Zine, M.; Touach, N.; Lofti, E. M.; Moulin, P. Kinetic Study on the Adsorption of Pollutants from Olive Mill Wastewater onto Granular Activated Carbon. Eur. J. Chem. 2025, 16, 364-369.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Bouhia, Y.; Hafidi, M.; Ouhdouch, Y.; Lyamlouli, K. Olive mill waste sludge: From permanent pollution to a highly beneficial organic biofertilizer: A critical review and future perspectives. Ecotoxicol. Environ. Safety 2023, 259, 114997.
https://doi.org/10.1016/j.ecoenv.2023.114997

[2]. Rifi, S. K.; Fels, L. E.; Driouich, A.; Hafidi, M.; Ettaloui, Z.; Souabi, S. Sequencing batch reactor efficiency to reduce pollutant in olive oil mill wastewater mixed with urban wastewater. Int. J. Environ. Sci. Technol. 2022, 19 (11), 11361-11374.
https://doi.org/10.1007/s13762-021-03866-2

[3]. De Luca, P.; Sicilia, V.; Candamano, S.; Macario, A. Olive vegetation waters (OVWs): characteristics, treatments and environmental problems. IOP. Conf. Ser.: Mater. Sci. Eng. 2022, 1251 (1), 012011.
https://doi.org/10.1088/1757-899X/1251/1/012011

[4]. Sadowski, B.; Nomaler, Ö.; Whalley, J. The patterns of growth in information and communication technologies: The case of the emerging internet of things. In The Internet of Things Entrepreneurial Ecosystems; Springer International Publishing: Cham, 2020; pp. 13-29.
https://doi.org/10.1007/978-3-030-47364-8_2

[5]. Chidichimo, F.; Basile, M. R.; Conidi, C.; De Filpo, G.; Morelli, R.; Cassano, A. A New Approach for Bioremediation of Olive Mill Wastewaters: Combination of Straw Filtration and Nanofiltration. Membranes 2024, 14 (2), 38.
https://doi.org/10.3390/membranes14020038

[6]. Enaime, G.; Dababat, S.; Wichern, M.; Lübken, M. Olive mill wastes: from wastes to resources. Environ. Sci. Pollut. Res. 2024, 31 (14), 20853-20880.
https://doi.org/10.1007/s11356-024-32468-x

[7]. Sayın, B.; Kaban, G. Biotechnological Innovations Unleashing the Potential of Olive Mill Wastewater in Added-Value Bioproducts. Foods 2024, 13 (14), 2245.
https://doi.org/10.3390/foods13142245

[8]. Carluccio, M. D.; Sabatino, R.; Borgomaneiro, G.; Cesare, A. D.; Rizzo, L. Bacterial community dynamics in a biofilm-based process after electro-assisted Fenton pre-treatment of real olive mill wastewater. Bioresource Technology 2025, 419, 132095.
https://doi.org/10.1016/j.biortech.2025.132095

[9]. Fleyfel, L. M.; Matta, J.; Sayegh, N. F.; El Najjar, N. H. Olive mill wastewater treatment using coagulation/flocculation and filtration processes. Heliyon 2024, 10 (22), e40348.
https://doi.org/10.1016/j.heliyon.2024.e40348

[10]. Vaz, T.; Quina, M. M.; Martins, R. C.; Gomes, J. Olive mill wastewater treatment strategies to obtain quality water for irrigation: A review. Sci. Total Environ. 2024, 931, 172676.
https://doi.org/10.1016/j.scitotenv.2024.172676

[11]. Tundis, R.; Conidi, C.; Loizzo, M. R.; Sicari, V.; Romeo, R.; Cassano, A. Concentration of Bioactive Phenolic Compounds in Olive Mill Wastewater by Direct Contact Membrane Distillation. Molecules 2021, 26 (6), 1808.
https://doi.org/10.3390/molecules26061808

[12]. Fatima, F.; Fatima, S.; Du, H.; Kommalapati, R. R. An Evaluation of Microfiltration and Ultrafiltration Pretreatment on the Performance of Reverse Osmosis for Recycling Poultry Slaughterhouse Wastewater. Separations 2024, 11 (4), 115.
https://doi.org/10.3390/separations11040115

[13]. Tanudjaja, H. J.; Anantharaman, A.; Ng, A. Q.; Ma, Y.; Tanis-Kanbur, M. B.; Zydney, A. L.; Chew, J. W. A review of membrane fouling by proteins in ultrafiltration and microfiltration. J. Water Process Eng. 2022, 50, 103294.
https://doi.org/10.1016/j.jwpe.2022.103294

[14]. Khouni, I.; Louhichi, G.; Ghrabi, A.; Moulin, P. Efficiency of a coagulation/flocculation-membrane filtration hybrid process for the treatment of vegetable oil refinery wastewater for safe reuse and recovery. Process Safety Environ. Protect. 2020, 135, 323-341.
https://doi.org/10.1016/j.psep.2020.01.004

[15]. Cifuentes-Cabezas, M.; Vincent-Vela, M. C.; Mendoza-Roca, J. A.; Álvarez-Blanco, S. Use of ultrafiltration ceramic membranes as a first step treatment for olive oil washing wastewater. Food Bioprod. Process. 2022, 135, 60-73.
https://doi.org/10.1016/j.fbp.2022.07.002

[16]. Cifuentes-Cabezas, M.; Carbonell-Alcaina, C.; Vincent-Vela, M. C.; Mendoza-Roca, J. A.; Álvarez-Blanco, S. Comparison of different ultrafiltration membranes as first step for the recovery of phenolic compounds from olive-oil washing wastewater. Process Safety Environ. Protec. 2021, 149, 724-734.
https://doi.org/10.1016/j.psep.2021.03.035

[17]. Akdemir, E. O. Box-Behnken experimental design method application in pretreatment of olive oil mill wastewater by ultrafiltration. Desalination Water Treat. 2023, 315, 251-259.
https://doi.org/10.5004/dwt.2023.30133

[18]. Ouadah, M.; Chemlal, R.; Mameri, N. Improvement of ultrafiltration of olive mill wastewater via ultrasound coupling. Int. J. Environ. Sci. Technol. 2023, 21 (3), 3103-3114.
https://doi.org/10.1007/s13762-023-05167-2

[19]. Heidarinejad, Z.; Dehghani, M. H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett. 2020, 18, 393-415.
https://doi.org/10.1007/s10311-019-00955-0

[20]. Aliakbarian, B.; Casazza, A. A.; Perego, P. Kinetic and isotherm modelling of the adsorption of phenolic compounds from Olive mill wastewater onto activated carbon. Food Technol. Biotechnol. 2015, 53, 207-214.
https://doi.org/10.17113/ftb.53.02.15.3790

[21]. Senol, A.; Hasdemir, M.; Hasdemir, B.; Kurdaş, I. Adsorptive removal of biophenols from olive mill wastewaters (OMW) by activated carbon: mass transfer, equilibrium and kinetic studies. Asia-Pacific. J. Chem. Eng. 2016, 12 (1), 128-146.
https://doi.org/10.1002/apj.2060

[22]. Al Bawab, A. F.; Abu-Dalo, M. A.; Kanaan, H.; Al-Rawashdeh, N.; Odeh, F. Removal of phenolic compounds from olive mill wastewater (OMW) by tailoring the surface of activated carbon under acidic and basic conditions. Water Science Technol. 2025, 91 (5), 567-580.
https://doi.org/10.2166/wst.2025.007

[23]. Odeh, F.; Abu-Dalo, M.; Albiss, B.; Ghannam, N.; Khalaf, A.; Amayreh, H. H.; Al Bawab, A. Coupling magnetite and goethite nanoparticles with sorbent materials for olive mill wastewater remediation. Emergent. Mater. 2022, 5 (1), 77-88.
https://doi.org/10.1007/s42247-022-00378-8

[24]. Yangui, A.; Abderrabba, M.; Sayari, A. Amine-modified mesoporous silica for quantitative adsorption and release of hydroxytyrosol and other phenolic compounds from olive mill wastewater. J. Taiwan Inst. Chem. Eng. 2017, 70, 111-118.
https://doi.org/10.1016/j.jtice.2016.10.053

[25]. Abu-Dalo, M.; Abdelnabi, J.; Bawab, A. A. Preparation of Activated Carbon Derived from Jordanian Olive Cake and Functionalized with Cu/Cu2O/CuO for Adsorption of Phenolic Compounds from Olive Mill Wastewater. Materials 2021, 14 (21), 6636.
https://doi.org/10.3390/ma14216636

[26]. Bouharat, D.; Bouzit, L.; Nechar, M.; El Laghdach, A.; El Yousfi, F. Kinetics, isotherm, and thermodynamic parameters of polyphenol adsorption from olive mill wastewater onto activated carbon. J. Mater. Environ. Sci. 2024, 15 (12), 1736-1747. https://www.jmaterenvironsci.com/Document/vol15/vol15_N12/JMES-2024-1512116-Bouharat.pdf

[27]. Zine, M.; Touach, N.; Lotfi, E. M.; Moulin, P. Efficiency of an Ultrafiltration Process for the Depollution of Pretreated Olive Mill Wastewater. Membranes 2025, 15 (3), 67.
https://doi.org/10.3390/membranes15030067

[28]. Ammari, M.; Zerrouk, M.; Zoufri, I.; El-Byari, Y.; Mazrha, A.; Mrizak, F. E.; Merzouki, M. Removal of organic compounds from olive mill wastewater using an eco-friendly adsorbent: Characterization, kinetics, isotherms, thermodynamics, and interaction analysis. Scientific African 2025, 27, e02612.
https://doi.org/10.1016/j.sciaf.2025.e02612

[29]. Mohamed Abdoul-Latif, F.; Ainane, A.; Hachi, T.; Abbi, R.; Achira, M.; Abourriche, A.; Brulé, M.; Ainane, T. Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents. Molecules 2023, 28 (11), 4310.
https://doi.org/10.3390/molecules28114310

[30]. Abu-Dalo, M.; Abdelnabi, J.; Al-Rawashdeh, N. A. F.; Albiss, B.; Al Bawab, A. Coupling coagulation-flocculation to volcanic tuff-magnetite nanoparticles adsorption for olive mill wastewater treatment. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100626.
https://doi.org/10.1016/j.enmm.2021.100626

[31]. Elamraoui, S.; Asdiou, N.; Boumya, W.; Billah, R. E.; Achaby, M. E.; Barka, N.; Lamy, E.; Alaoui, F. E.; Chhiti, Y.; Benhida, R.; Achak, M. Comparative study of raw Pinus sylvestris sawdust and its activated carbon for chemical oxygen demand and polyphenols removal from Olive Mill Wastewater. Biomass. Conv. Bioref. 2025, 15 (18), 25141-25169.
https://doi.org/10.1007/s13399-025-06814-z

Supporting Agencies

The Ambassy of France in Morocco (Grant number 166182Z).
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).