European Journal of Chemistry

Optical and gas sensing studies of transparent ZnO thin film deposited from a new precursor by ultrasonic aerosol assisted chemical vapor deposition

Main Article Content

Muzammil Hussain
Syed Tajammul Hussain


Transparent semi-conducting ZnO thin films with low resistivity and high transmittance in the visible optical region were deposited by the decomposition of bis(2,4-pentanedionate)-bis(aminoethanol) zinc(II) under an atmosphere of oxygen on ceramic, metal and quartz substrates by ultrasonic aerosol assisted chemical vapor deposition. The precursor was synthesized from bis(2,4-pentanedionate) zinc(II) and aminoethanol by sonication in acetonitrile and was characterized by melting point, infrared spectroscopy, CHNS-O elemental, atomic absorption, and single crystal X-ray diffraction analysis. TGA-FTIR was used to identify the cause of the weight losses and evolved gases formed during the breakup of the molecules. Electrical and optical measurements showed that the ZnO film has a band gap of 3.02 eV and typical semiconductor properties with a resistivity that depends on the thickness of the film. Powder XRD, SEM and EDX show that films are uniform, smooth and crystalline in nature, giving particle sizes in the range of 30-60 nm and exhibit a (002) orientation with the c-axis perpendicular to the substrate surface.


icon graph This Abstract was viewed 1506 times | icon graph Article PDF downloaded 660 times

How to Cite
Hussain, M.; Hussain, S. T. Optical and Gas Sensing Studies of Transparent ZnO Thin Film Deposited from a New Precursor by Ultrasonic Aerosol Assisted Chemical Vapor Deposition. Eur. J. Chem. 2010, 1, 96-101.

Article Details

Author Biography

Syed Tajammul Hussain, National Centre For Physics, Quaid-i-Azam University Complex, Islamabad-43520, Pakistan

Nano Science and Catalysis Div.


Crossref - Scopus - Google - European PMC

[1]. Sberveglieri, G. Sens. Actuators. B.1995, 23, 103-109.

[2]. Chang S. J.; SuY. K.; Shei Y. P. J. Vac. Sci. Technol. A 1995, 13, 385-388.

[3]. Gopel W. Sens. Actuators. B. 1994, 18, 1-21.

[4]. Magar S.; Kumar S.; Bhatnagar M. Appl. Phys. Lett. 1986, 49, 394-400.

[5]. Beek W. J. E.; Wienk M. M.; Janssen R. A. J. Adv. Funct. Mater. 2006, 16, 1112-1116.

[6]. Ma J.; Ji F; Ma H.; Li S. Solar Energy Materials and Solar Cells, 2000, 60, 341-348.

[7]. Ellmer K. J. Phys. D: Appl. Phys. 2000, 33, R17-R32.

[8]. Patil1 R. S.; Pathan H. M.; Gujar T. P.; Lokhande D.; Jayaraj M. K.; Antony A.; Ramachandran M. J. Mater. Sci. 2006, 41, 5723-5725.

[9]. Czternastek H. Opto-Electron. Rev. 2004, 12, 49–52.

[10]. Natsume Y.; Sakata H. J. Mater. Sci. Mater. Electron. 2001, 12, 87-92.

[11]. Cammarata R. C. Scr. Mater. 2004, 50, 751-755.

[12]. Zhao W. B.; Zhang X. D.; Ye Z. Y.; Zhang J. L.; Li C. Y.; Yin D. L.; Gu Z. N.; Zhou X. H.; Jin Z. X. Thin Solid Films, 1994, 240, 14-21.

[13]. Dahl G. H.; Block B. P. Inorg. Chem. 1966, 5, 1394-1396.

[14]. Harrod J. F.; Taylor K. R. Inorg. Chem. 1975, 14, 1541-1545.

[15]. Bickley D. G.; Serpone N. Inorg. Chem. 1979, 18, 2200-2204.

[16]. Schmidke H. H.; Voets U. Inorg. Chem. 1981, 20, 2766-2771.

[17]. Lin C.; Kagan C. R. J. Am. Chem. Soc. 2003, 93, 336-337.

[18]. Chun H. K.; Steffen W. L.; Fay R. C. Inorg. Chem. 1979, 18, 2458-2465.

[19]. Pinnavaia T. J.; Mocella M. T.; Averill B. A.; Woodard J. T. Inorg Chem. 1973, 12, 763-768.

[20]. Manzer L. E. Inorg. Chem. 1978, 17, 1552–1558.

[21]. Srinivasan G.; Kumar J. Cryst. Res.Tech. 2006, 41, 893-896.

[22]. Zhang C. J. Phys. Chem. Solids. 2010, 71, 364-369.

[23]. Amiri M. G.; Morsali A.; Hunter A. D.; Zeller M. Solid state Sci. 2007, 9, 1079-1084.

[24]. Zeller M.; Hunter A. D.; McCarthy J. R.; Capetta S. H.; Bruckner C. J. Chem. Crystallg. 2005, 35, 935-942.

[25]. Sheldrick G. M. SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, 1997.

[26]. Mazhar M.; Hussain S.M.; Rabbani F.; Kociok-Köhn G.; Molloy K. C. Bull. Korean Chem. Soc. 2006, 27, 1572-1576.

[27]. Yi F.; Ye F.; William G. S.; Collinson M. J. Phys. Chem. 2006, 110, 9164-9170.

[28]. Gasgnier M. Adv. Mater. 1986, 114, 11-16.

[29]. Romeo A.; Terheggen M.; Abou-Ras D.; Bätzner D. L.; Haug F. J.; Kälin M.; Rudmann D.; Tiwari A. N. Adv. Mater. 2004, 12, 93-111.

[30]. Gao X. D., Li X. M.; Yu W. D., Thin Solid Film. 2005, 484, 160-164.

[31]. Gomos C.; Ozkendir O. M.; Kavak H.; Ufuktepe Y. J. Optoelectron. Adv. Mat. 2006, 8, 299-305.

[32]. Chou S. M.; Teoh L. G.; Lai W. H.; Su Y. H.; Hon, M. H. Sens. 2006, 6, 1420-1427.

[33]. Shiyoshi Y.; Ayumi Y.; Tomoka U.; Masayoshi W.; Kohei S.; Chem. Lett. 1990, 19, 779-782.

[34]. Tsutsumi N.; Sakata K; Kunitake T. Chem. Lett. 1992, 21, 1465-1468.


Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).