European Journal of Chemistry 2010, 1(4), 266-275 | doi: https://doi.org/10.5155/eurjchem.1.4.266-275.59 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Prediction of n-octanol-water partition coefficient for polychlorinated biphenyls from theoretical molecular descriptors


Majid Safdari (1) , Hassan Golmohammadi (2,*)

(1) Department of Chemistry, Esfahan University of Technology, Esfahan, IR-84156-8311, Iran
(2) Department of Chemistry, Mazandaran University, Babolsar, IR-47415, Iran
(*) Corresponding Author

Received: 12 Apr 2010 | Revised: 24 Jul 2010 | Accepted: 28 Jul 2010 | Published: 22 Dec 2010 | Issue Date: December 2010

Abstract


A quantitative structure-property relationship (QSPR) study was performed to develop models that relate the structures of 133 polychlorinated biphenyls to their n-octanol-water partition coefficients (log Kow). Molecular descriptors were derived solely from 3D structures of the molecules. The genetic algorithm-partial least squares (GA-PLS) method was applied as a variable selection tool.  The partial least square (PLS) method was used to select the best descriptors and the selected descriptors were used as input neurons in neural network model. These descriptors are: Balabane index (J), XY Shadow (SXY), Kier shape index (order 3) (3к), Wiener index (W) and Maximum valency of C atom (VmaxC). The use of descriptors calculated only from molecular structure eliminates the need for experimental determination of properties for use in the correlation and allows for the estimation of log Kow for molecules not yet synthesized. The root mean square errors for ANN predicted partition coefficients of training, test and external validation sets were 0.063, 0.112 and 0.126, respectively, while these values are 0.230, 0.164 and 0.297 for the PLS model, respectively. Comparison between these values and other statistical parameters for these two models revealed the superiority of the ANN over the PLS model.

1_4_266_275_800


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).


Editor-in-Chief
European Journal of Chemistry

Keywords


Quantitative Structure-Property Relationship; n-Octanol–water partition coefficient; Artificial neural network; Partial least squares; Genetic algorithm

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.1.4.266-275.59

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 1168 times | icon graph PDF Article downloaded 527 times

Funding information


Mazandaran University

Citations

/


[1]. Don Mackay, Jan C. Myland, Keith B. Oldham, J. Mark Parnis
Pitfalls in the application of statistics to chemical data: the determination of the partition ratio $$K_{\mathrm{ow} }$$ K ow as a case in point
Journal of Mathematical Chemistry  56(5), 1407, 2018
DOI: 10.1007/s10910-018-0862-0
/


[2]. Jayshree Annamalai, Vasudevan Namasivayam
Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife
Environment International  76, 78, 2015
DOI: 10.1016/j.envint.2014.12.006
/


References


[1]. Wania, F.; Mackay, D. Ambio. 1993, 22, 10-18.

[2]. Giesy, J. P.; Kannan, K. Crit. Rev. Toxicol. 1998, 28, 511- 569.
doi:10.1080/10408449891344263
PMid:9861526

[3]. King, C. M.; King, R. B.; Bhattacharyya, N. K.; Newton, M. G. Organomet. Chem. 2000, 600, 63-70.
doi:10.1016/S0022-328X(00)00031-0

[4]. Sanchez, E.; Fernandez, S. M.; Lopez-Aparicio, P.; Recio, M. N.; Perez-Albarsanz, M. A. Chem. Biol. Interact. 2000, 125, 117-131.
doi:10.1016/S0009-2797(00)00142-3

[5]. Leo, A. J. Chem. Rev. 1993, 93, 1281-1306.
doi:10.1021/cr00020a001

[6]. Klopman, G.; Li, J. Y.; Wang, S. J. Chem. Inf. Comput. Sci. 1994, 34, 752-781.
doi:10.1021/ci00020a009

[7]. Platts, J. A.; Butina, D.; Abraham, M. H.; Hersey, A. J. Chem. Inf. Comput. Sci. 1999, 39, 835-845.
doi:10.1021/ci980339t

[8]. Woodrow, B. N.; Dorsey, J. G. Environ. Sci. Technol. 1997, 31, 2812-2820.
doi:10.1021/es9700313

[9]. Platts, J. A.; Abraham, M. H.; Butina, D.; Hersey, A. J. Chem. Inf. Comput. Sci. 2000, 40, 71-80.
doi:10.1021/ci990427t

[10]. Khadikar, P. V.; Singh, S.; Shrivastava, A. Bioorg. Med. Chem. Lett. 2002, 12, 1125-1128.
doi:10.1016/S0960-894X(02)00086-0

[11]. Chen, J. W.; Xue, X. Y.; Schramm, K. W.; Xie, Q.; Yang, F. L.; Kettrup, A. Chemosphere 2002, 48, 535-544.
doi:10.1016/S0045-6535(02)00041-3

[12]. Niu, J. F.; Yang, Z. F.; Shen, Z. Y.; Long, X. X.; Yu, G. Chemosphere 2006, 64, 658-665.
doi:10.1016/j.chemosphere.2005.10.051
PMid:16343592

[13]. Lu, W.; Chen, Y.; Liu, M.; Chen, X.; Hu, Z. Chemosphere 2007, 69,469-478.
doi:10.1016/j.chemosphere.2007.04.044
PMid:17568650

[14]. Padmanabhan, J.; Parthasarathi, R.; Subramaniana, V.; Chattaraj, P. K. Bioorganic & Medicinal Chemistry 2006, 14, 1021-1028.
doi:10.1016/j.bmc.2005.09.017

[15]. Puzyn, T.; Falandysz, J. Phys. Chem. Ref. Data 2007, 36, 203-214.
doi:10.1063/1.2432888

[16]. Li, L.; Xie, S.; Cai, H.; Bai, X.; Xue, Z. Chemosphere 2008, 72, 1602-1606.
doi:10.1016/j.chemosphere.2008.04.020
PMid:18508108

[17]. Vegas, J. M.; Zufiria, P. J. Neural Networks 2004, 17, 233-245.
doi:10.1016/j.neunet.2003.05.001
PMid:15036341

[18]. Schweitzer, R. C.; Morris, J. B. Anal. Chem. Act. 1999, 384, 285-303.
doi:10.1016/S0003-2670(98)00781-8

[19]. Tong, C. S.; Cheng, K. C. Chemom. Intell. Lab. Syst. 1999, 49, 135-150.
doi:10.1016/S0169-7439(99)00031-3

[20]. Golmohammadi, H.; Fatemi, M. H. Electrophoresis 2005, 26, 3438-3444.
doi:10.1002/elps.200500203
PMid:16110463

[21]. Baher, E.; Fatemi, M. H.; Konoz, E.; Golmohammadi, H. Microchim Acta 2007, 158, 117-122.
doi:10.1007/s00604-006-0675-x

[22]. Konoz, E.; Golmohammadi, H. Anal. Chem. Act. 2008, 619, 157-164.
doi:10.1016/j.aca.2008.04.065
PMid:18558108

[23]. Lui, F.; Liang, Y.; Cao, C. Chemom. Intell. Lab. Syst. 2006, 81, 120-126.
doi:10.1016/j.chemolab.2005.10.004

[24]. Hyperchem, Rel. 4. for Windows, Autodesk, Sansalito, CA, 1995.

[25]. Stewart, J. J. P. Semiempirical Molecular Orbital Program; QCPE, 445 (1983), Version 6, 1990.

[26]. Katritzky, A. R.; Labadov, V. S.; Carelson, M. CODESSA Training Manual, University of Florida, Gainesville, 1995.

[27]. Katritzky, A. R.; Labadov, V. S.; Carelson, M. CODESSA Version 1 Reference Manual, University of Florida, Gainesville, Florida, 1994.

[28]. Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine learning, Addison-Wesley, New York, 1989.

[29]. Hoskuldsson, A. Prediction Methods in Science and Technology Vol. 1: Basic Theory, Thur Publishing, Denmark, 1996.

[30]. Hasegawa, K.; Kimura, T.; Funatsu, K. Quant. Struct. Acta. Relat. 1999, 18, 262-272.

[31]. Leardi, R.; Boggia, R. Terrile, M. J. Chemom. 1992, 6, 267-281.

[32]. Leardi, R.; Gonzalez, A. L. Chemom. Intell. Lab. Sys. 1998, 41, 195-207.
doi:10.1016/S0169-7439(98)00051-3

[33]. Lorber, A.; Wangen, L.; Kowalsky, B. R. J. Chemom. 1987, 1, 19-31.
doi:10.1002/cem.1180010105

[34]. Khayamian, T.; Ensafi, A. A.; Hemmateenejad, B. Talanta 1999, 49, 587-596.
doi:10.1016/S0039-9140(99)00052-1

[35]. Shamsipur, M.; Hemmateenejad, B.; Akhond, M.; Sharghi, H. Talanta 2001, 54, 1113-1120.
doi:10.1016/S0039-9140(01)00374-5

[36]. Hoskuldsson, A. Chemom. Intell. Lab. Syst. 2001, 55, 23-38.
doi:10.1016/S0169-7439(00)00113-1

[37]. MATLAB 7. 0, The Mathworks Inc., Natick, MA, USA, http://www.mathworks.com.

[38]. Zupan, J.; Gasteiger, J. Neural Network in Chemistry and Drug Design; Wiley-VCH. Weinheim, 1999.

[39]. Beal, T. M.; Hagan, H. B.; Demuth, M., Neural Network Design; PWS, Boston, 1996.

[40]. Zupan, J.; Gasteiger, J. Neural Networks for Chemists: an Introduction; VCH. Weinheim, 1993.

[41]. Blank, T. B.; Brown, S. T. Anal. Chem. 1993, 65, 3081-3089.
doi:10.1021/ac00069a023

[42]. Jalali-Heravi, M.; Fatemi, M. H. J. Chromatogr. A 2001, 915, 177-183.
doi:10.1016/S0021-9673(00)01274-7

[43]. Golbraikh, A.; Tropsha, A. J. Mol. Graphics Modell. 2002, 20, 269-276.
doi:10.1016/S1093-3263(01)00123-1

[44]. Roy, P. P.; Roy, K. QSAR Comb. Sci. 2008, 27, 302-313.
doi:10.1002/qsar.200710043

[45]. Maldonado, A. G.; Doucet, J. P.; Petitjean, M.; Fan, B. T. Mol. Divers. 2006, 10, 39-79.
doi:10.1007/s11030-006-8697-1
PMid:16404528

[46]. Sannigrahi, A. B. Adv. Quant. Chem. 1992, 23, 301-351.
doi:10.1016/S0065-3276(08)60032-5

[47]. Wiener, H. J. Am. Chem. Soc. 1947, 69, 17-20.
doi:10.1021/ja01193a005
PMid:20291038

[48]. Kier, L. B. Computational Chemical Graph Theory Rouvray, D. H. (editor), Nova Science Publishers, New York, 1990, pp. 151-174.

[49]. Kowalski, B. R. (Ed.), Chemometrics, Reidel, Dordrecht, 1984.

[50]. Stankevich, M. I.; Stankevich, I. V.; Zefirov, N. S.; Russ. Chem. Rev. 1988, 57, 191-208.
doi:10.1070/RC1988v057n03ABEH003344

[51]. El-Basil, S.; Randic, M. Adv. Quant. Chem. 1992, 24, 239-290.
doi:10.1016/S0065-3276(08)60103-3


How to cite


Safdari, M.; Golmohammadi, H. Eur. J. Chem. 2010, 1(4), 266-275. doi:10.5155/eurjchem.1.4.266-275.59
Safdari, M.; Golmohammadi, H. Prediction of n-octanol-water partition coefficient for polychlorinated biphenyls from theoretical molecular descriptors. Eur. J. Chem. 2010, 1(4), 266-275. doi:10.5155/eurjchem.1.4.266-275.59
Safdari, M., & Golmohammadi, H. (2010). Prediction of n-octanol-water partition coefficient for polychlorinated biphenyls from theoretical molecular descriptors. European Journal of Chemistry, 1(4), 266-275. doi:10.5155/eurjchem.1.4.266-275.59
Safdari, Majid, & Hassan Golmohammadi. "Prediction of n-octanol-water partition coefficient for polychlorinated biphenyls from theoretical molecular descriptors." European Journal of Chemistry [Online], 1.4 (2010): 266-275. Web. 28 Sep. 2023
Safdari, Majid, AND Golmohammadi, Hassan. "Prediction of n-octanol-water partition coefficient for polychlorinated biphenyls from theoretical molecular descriptors" European Journal of Chemistry [Online], Volume 1 Number 4 (22 December 2010)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.1.4.266-275.59


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2010, 1(4), 266-275 | doi: https://doi.org/10.5155/eurjchem.1.4.266-275.59 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.