European Journal of Chemistry

Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60–M+] supramolecular complexes



Main Article Content

Avat Arman Taherpour
Masomeh Tayebi-Suraki
Nosratollah Mahdizadeh

Abstract

The isolated pentagon rule (IPR) states that all pentagonal carbon rings are isolated in the most stable fullerenes. Fullerenes (buckministerfullerene) are a class of spherical carbon allotrope group with unique properties. Electron transfer between fullerene C60 derivatives such as alkynyldihydrofullerene (1-alkynyl-C60 carbanion) and other molecules are thought to involve the transfer of electrons between molecules surrounding the fullerene cage. One class of electron-transfer molecules has introduced as [X-UT-Y][R-C60M+](R=tert-Bu- & H–C≡C-; M=Li & K). The supramolecular complexes [X-UT-Y] (1-9) and [R-C60M+] (R=tert-Bu- & H–C≡C-; M=Li & K) are shown to possess a previously unreported host-guest interaction for electron transfer processes. The unsaturated, thiocrown ethers (1-9, with cis-geometry) (described as [X-UT-Y], where X and Y indicate the numbers of carbon and sulfur atoms, respectively) are a group of crown ethers that display interesting physiochemical properties in light of their conformational restriction compared to a corresponding saturated system, as well as the sizes of their cavities. Topological indices have been successfully used to construct mathematical methods that relate the structural data to the various chemical and physical properties. To establish a good relationship between the structures of 1-9 with derivatives of alkynyldihydrofullerene (1-alkynyl-C60 carbanion) as [R-C60M+] (R=tert-Bu- & H–C≡C-; M=Li & K) in DMSO and THF solvents 12-38, an index (mcs) is utilized. This index is the ratio of the sum of the number of carbon atoms (nc) and the number of sulfur atoms (ns) with the product of these two numbers for 1-9. In this study, were investigated the relationships between this index and the first to third free energies of electron transfer (ΔGet(n); n=1-3, which is given by the Rehm-Weller equation) between 1-9 and [R-C60M+] (R=tert-Bu- & H–C≡C-; M=Li & K) as [X-UT-Y][R-C60M+](R=tert-Bu- & H–C≡C-; M=Li & K) supramolecular complexes in DMSO and THF solvents. The first to third free energies of electron transfer and the kinetic rate constants of the electron transfers, ΔG#et(n) and ket (n=1-3), respectively, were also calculated for [X-UT-Y][R-C60M+] (R=tert-Bu- & H–C≡C-; M=Li & K) in DMSO and THF, in accordance with the Marcus theory.

3_3_340_347_800


icon graph This Abstract was viewed 1818 times | icon graph Article PDF downloaded 2133 times

How to Cite
(1)
Taherpour, A. A.; Tayebi-Suraki, M.; Mahdizadeh, N. Theoretical Free Energies of Electron Transfer, Electrochemical Properties, Electron Transfer Kinetic and Quantitative Structural Relationships Studies of Alkynyldihydrofullerene in [X-UT-Y][R-C60–M+] Supramolecular Complexes. Eur. J. Chem. 2012, 3, 340-347.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162-163.
http://dx.doi.org/10.1038/318162a0

[2]. Guhaa, S.; Nakamoto, K. Coord. Chem. Rev. 2005, 249, 1111-1132.
http://dx.doi.org/10.1016/j.ccr.2004.11.017

[3]. Murphy, T. A.; Pawlik, T. H; Weidinger, A.; Hohne, M.; Alcala, R.; Spath, J. M. Phys. Rev. Lett. 1996, 77, 1075-1078.
http://dx.doi.org/10.1103/PhysRevLett.77.1075
PMid:10062984

[4]. Billups, W. E. J. Am. Chem. Soc. 2005, 127(33), 11876.
http://dx.doi.org/10.1021/ja059725z

[5]. Wang, L. S.; Conceicao, C.; Jin, C.; Smalley, R. E. Chem. Phys. Lett. 1991, 182, 5-11.
http://dx.doi.org/10.1016/0009-2614(91)80094-E

[6]. Boltalina, O. V.; Ioffe, I. N.; Sorokin I. D.; Sidorov, L. N. J. Phys. Chem. 1997, 101(50), 9561-9563.
http://dx.doi.org/10.1021/jp972643f

[7]. Heflin, J. R.; Marciu, D.; Figura C.; Wang, S.; Burbank, P.; Stevenson, S.; Dorn, H. C. Appl. Phys. Lett. 1998, 72, 2788.
http://dx.doi.org/10.1063/1.121456

[8]. Zettergren, H.; Alcami, M.; Martin, F. Chem. Phys. Chem. 2008, 9(6), 861-866.
http://dx.doi.org/10.1002/cphc.200700670
PMid:18404775

[9]. Kato, H.; Taninaka, A.; Sugai, T.; Shinohara, H. J. Am. Chem. Soc. 2003, 125(26), 7782-7783.
http://dx.doi.org/10.1021/ja0353255
PMid:12822979

[10]. Slanina, Z.; Chen, Z.; Schleyer, P. V. R.; Uhlik, F.; Lu, X.; Nagase, S. J. Phys. Chem. A. 2006, 110(6), 2231-2234.
http://dx.doi.org/10.1021/jp055894u
PMid:16466260

[11]. Lu, X.; Nikawa, H.; Nakahodo, T.; Tsuchiya, T.; Ishitsuka, M. O.; Maeda, Y.; Akasaka, T.; Toki, M.; Sawa, H.; Slanina, Z.; Mizorogi, N.; Nagase, S. J. Am. Chem. Soc. 2008, 130(28), 9129-9136.
http://dx.doi.org/10.1021/ja8019577
PMid:18570421

[12]. Wakahara, T.; Nikawa, H.; Kikuchi, T.; Nakahodo, T.; Aminur Rahman, G. M.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Yoza, K.; Horn, E.; Yamamoto, K.; Mizorogi, N.; Slanina Z.; Nagase, S. J. Am. Chem. Soc. 2006, 128(44), 14228-14229.
http://dx.doi.org/10.1021/ja064751y
PMid:17076475

[13]. Kobayashi, K.; Nagase, S.; Yoshida M.; Osawa, E. J. Am. Chem. Soc. 1997, 119(51), 12693-12694.
http://dx.doi.org/10.1021/ja9733088

[14]. Slanina, Z.; Kobayashi, K.; Nagase, S. Chem. Phys. Lett. 2003, 372(5-6), 810-814.
http://dx.doi.org/10.1016/S0009-2614(03)00519-0

[15]. Slanina, Z.; Ishimura, K.; Kobayashi K.; Nagase, S. Chem. Phys. Lett. 2004, 384, 114-118.
http://dx.doi.org/10.1016/j.cplett.2003.11.097

[16]. Lu, X.; Nikawa H.; Nakahodo T.; Tsuchiya, T.; Ishitsuka, M. O; Maeda, Y.; Akasaka, T.; Toki, M.; Sawa, H.; Slanina, Z.; Mizorogi N.; Nagase, S. J. Am. Chem. Soc. 2008, 130(28), 9129-9136.
http://dx.doi.org/10.1021/ja8019577
PMid:18570421

[17]. Wang, C.; Kai, T.; Tomiyama, T.; Yoshida, T.; Kobayashi, Y.; Nishibori, E.; Takata, M.; Sakata M.; Shinohara, H. Nature 2000, 408, 426.
http://dx.doi.org/10.1038/35044195
PMid:11100714

[18]. Stevenson, S.; Fowler, P. W; Heine, T.; Duchamp, J. C.; Rice, G.; Glass, T.; Harich, K.; Hajdu, E.; Bible, R.; Dorn, H. C. Nature 2000, 408, 427-428.
http://dx.doi.org/10.1038/35044199
PMid:11100715

[19]. Shi, Z.; Wu, X.; Wang, C.; Lu X.; Shinohara, H. Angew. Chem. Int. Ed. 2006, 45, 2107-2111.
http://dx.doi.org/10.1002/anie.200503705
PMid:16498689

[20]. Beavers, C. M.; Zuo, T.; Duchamp, J. C.; Harich, K.; Dorn, H. C.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2006, 128(35), 11352-11353.
http://dx.doi.org/10.1021/ja063636k
PMid:16939248

[21]. Yang, S.; Popov, A. A.; Dunsch, L. Angew. Chem. Int. Ed. 2007, 46, 1256-1259.
http://dx.doi.org/10.1002/anie.200603281
PMid:17211915

[22]. Slanina, Z.; Chen, Z.; Schleyer, P. R.; Uhlik, F.; Lu, X.; Nagase, S. J. Phys. Chem. A. 2006, 110, 2231-2234.
http://dx.doi.org/10.1021/jp055894u
PMid:16466260

[23]. Popov, A. A.; Dunsch, L. J. Am. Chem. Soc. 2007, 129(38), 11835-11849.
http://dx.doi.org/10.1021/ja073809l
PMid:17760444

[24]. Park, S. S.; Liu, D.; Hagelberg, F. J. Phys. Chem. A. 2005, 109(39), 8865-8873.
http://dx.doi.org/10.1021/jp0516339
PMid:16834290

[25]. Curry, J. D. J. Exp. Biol. 1999, 202, 3285-3294.

[26]. Kamat, S.; Su, X.; Ballarini, R.; Heuer, A. H. Nature 2000, 405, 1036-1040.
http://dx.doi.org/10.1038/35016535
PMid:10890440

[27]. Murata, Y.; Motoyama, K.; Komatsu, K.; Wan, T. S. M. Tetrahedron, 1996, 52(14), 5077-5090.
http://dx.doi.org/10.1016/0040-4020(96)00115-9

[28]. Bhyrappa, P. D. W.; Paul, P.; Stinchcombe, P.; Bolskar, J.; Sun, R. D.; Reed, C. A. J. Am. Chem. Soc. 1995, 117, 2907-2914.
http://dx.doi.org/10.1021/ja00115a024

[29]. Wudl, F.; Hirsh, A.; Khemani, K. C.; Suzuki, T.; Allemand, P. M.; Koch, A.; Eckert, H., Srdanov, G.; Webb, H. M. In Fullerenes Synthesis, Properties, and Chemistry of Large Carbon Clusters; Hammond, G. S.; Kuck, V. J.; Eds.; ACS Symposium Series 48, American Chemical Society: Washington, DC, 1992, 161-175.

[30]. Hirsch, A.; Soi, A.; Karfunkel, H. R. Angew. Chem., Int. Ed. Engl. 1992, 31, 766-768.
http://dx.doi.org/10.1002/anie.199207661

[31]. Fagan, P. J.; Krusic, P. J.; Evans, D. H.; Lerke, S. A.; Johnston, E. J. Am. Chem. Soc. 1992, 114, 9697-9699.
http://dx.doi.org/10.1021/ja00050a081

[32]. Charton, M. In Progress in Physical Organic Chemistry, Ed.; rw Taft, Wiley: New York, 1981, Vol. 13, p. 119-251.

[33]. Anderson; H. L.; Faust, R.; Rubin, Y.; Diederich, F. Angew. Chem. 1994, 106, 1427-1429.

[34]. Tsuchiya, T.; Shimizu, T.; Kamigata, N. J. Am. Chem. Soc. 2001, 123(47), 11534-11538.
http://dx.doi.org/10.1021/ja0102742
PMid:11716706

[35]. Tsuchiya, T.; Kurihara, H.; Sato, K.; Wakahara, T.; Akasaka, T.; Shimizu, T.; Kamigata, N.; Mizorogi N.; Nagase, S. Chem. Commun. 2006, 20, 3585-3587.
http://dx.doi.org/10.1039/b606183d
PMid:17047772

[36]. Anderson, M. R.; Dorn, H. C.; Stevenson, S. A. Carbon 2000, 38, 1663-1670.
http://dx.doi.org/10.1016/S0008-6223(00)00089-0

[37]. Cooper, S. R. Acc. Chem. Res. 1988, 21(4), 141-146.
http://dx.doi.org/10.1021/ar00148a002

[38]. Blake, A. J.; Schroder, M.; Advances in Inorganic Chemistry, Ed. Sykes, A. G., Academic Press. Inc.: New York, 1990, Vol. 35, p 2 and references therein.

[39]. Rawle, S. C.; Cooper, S. R. J. Chem. Soc., Chem. Commun. 1987, 4, 308-309.

[40]. Parker, D. Macrocycle Synthesis: A Practical Approach, Ed., Oxford University Press: New York, 1996.

[41]. Pedersen, C. J. J. Org. Chem. 1971, 36(2), 254-257.
http://dx.doi.org/10.1021/jo00801a003

[42]. Murray, S. G.; Hartley, F. R. Chem. Rev. 1981, 81(4), 365-414.
http://dx.doi.org/10.1021/cr00044a003

[43]. Nakayama, J.; Kaneko, A.; Sugihara, Y.; Ishii, A. Tetrahedron. 1999, 55(33), 10057-10066.
http://dx.doi.org/10.1016/S0040-4020(99)00540-2

[44]. Weaver, J. H.; Chai, Y.; Kroll, G. H.; Jin, C.; Ohno, T. R.; Haufler, R. E.; Guo, T.; Alford, J. M.; Conceicao, J.; Chibante, L. P. F.; Jain, A.; Palmer, G.; Smalley, R. E. Chem. Phys. Lett. 1992, 190(5), 460-464.
http://dx.doi.org/10.1016/0009-2614(92)85173-8

[45]. Smalley, R. E.; Hamond, G. S.; Kuck, V. J.; Editor, Fullerenes, Washington DC: American Chemical Society, pp. 1992, 141-59.

[46]. Yannoni, C. S.; Hoinkis, M.; De Vries, M. S.; Bethune, D. S.; Salem, J. R.; Crowder, M. S.; Johnson R. D.; Robert, D. Science 1992, 256, 1191-1192.
http://dx.doi.org/10.1126/science.256.5060.1191
PMid:17795216

[47]. Ruoff, R. S.; Kadish, K. M.; Boulas, P.; Chen, E. C. M. J. Phys. Chem. 1995, 99(21), 8843-8850.
http://dx.doi.org/10.1021/j100021a060

[48]. Fowler, P. W. Manolopoulos, D. E.; In: An Atlas of Fullerenes, Vol. 30, Oxford: Clarendon Press, 1995.

[49]. Hoffman, K. R.; Delapp, K.; Andrews, H.; Sprinkle, P.; Nickels, M.; Norris, B. J. Lumin. 1995, 66-67(1-6), 244-248.

[50]. Dennis, T. J. S.; Kai, T.; Tomiyama, T.; Shinohara, H. Chem. Commun. 1998, 5, 619-620.
http://dx.doi.org/10.1039/a708025e

[51]. Stevenson, S.; Dorn, H. C.; Burbank, P. M.; Harich, K.; Haynes, J. Kiang, C. H.; Salem, J. R.; de Vries, M. S.; Van Loosdrecht, P. H. M.; Johnson, R. D.; Yannoni, C. S.; Bethune, D. S. Anal. Chem. 1994, 66(17), 2675-2679.
http://dx.doi.org/10.1021/ac00089a013

[52]. Iiduka, Y.; Wakahara, T.; Nakajima, K.; Tsuchiya, T.; Nakahodo, T.; Maeda, Y.; Akasaka, T.; Mizorogi N.; Nagase, S. Chem. Commun. 2006, 19, 2057-2059.
http://dx.doi.org/10.1039/b601738j
PMid:16767274

[53]. Slanina, Z.; Kobayashi, K.; Nagase, S. J. Chem. Phys. 2004, 120, 3397-3400.

[54]. Nagase, S.; Kobayashi, K. Chem. Phys. Lett. 1994, 231(2-3), 319-324.
http://dx.doi.org/10.1016/0009-2614(94)01261-X

[55]. Hansen, P. J.; Jurs, P. J. Chem. Edu. 1988, 65, 574-580.
http://dx.doi.org/10.1021/ed065p574

[56]. Hosoya, H. Bull. Chem. Soc. Jpn. 1971, 44, 2332-2339.
http://dx.doi.org/10.1246/bcsj.44.2332

[57]. Randic, M. Acta Chim. Slov. 1998, 4, 239-252.

[58]. Rucker G.; Rucker, C. J. Chem. Inf. Comput. Sci. 1999, 39, 788-802.
http://dx.doi.org/10.1021/ci9900175

[59]. Wiener, H. J. Am. Chem. Soc. 1947, 69, 17-20.
http://dx.doi.org/10.1021/ja01193a005
PMid:20291038

[60]. Du, Y. P.; Liang, Y. Z.; Li B. Y.; Xu, C. J. J. Chem. Inf. Comput. Sci. 2002, 42, 1128-1138.

[61]. Randic, M. J. Am. Chem. Soc. 1975, 97, 6609-6615.
http://dx.doi.org/10.1021/ja00856a001

[62]. Sabljic A.; Trinajstic, N. Acta Pharm. Ugosl. 1981, 31, 189-214.

[63]. Sybold, P. G.; May, M.; Bagal, U. A. J. Chem. Edu. 1987, 64(7), 575-582.
http://dx.doi.org/10.1021/ed064p575

[64]. Kier L. B.; Hall, L. H.; Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.

[65]. Randic, M. J. Math. Chem. 1991, 7, 155-168.
http://dx.doi.org/10.1007/BF01200821

[66]. Randic, M.; and Mills, D.; Basak, S. C. Int. J. Quantum Chem. 2000, 80, 1199-1209.
http://dx.doi.org/10.1002/1097-461X(2000)80:6<1199::AID-QUA6>3.0.CO;2-M

[67]. Randic, M.; Plavsic; D.; Lers, N. J. Chem. Inf. Comput. Sci. 2001, 41, 657-662
http://dx.doi.org/10.1021/ci000118z

[68]. Randic, M.; Basak, S. C. J. Chem. Inf. Comput. Sci. 2001, 41, 614-618.
http://dx.doi.org/10.1021/ci000114u

[69]. Randic. M.; Pompe, M. J. Chem. Inf. Comput. Sci. 2001, 41, 575-581.
http://dx.doi.org/10.1021/ci0001029

[70]. Kier, L. B.; Hall, L. H. Molecular Connectivity in Structure-Activity, Research Studies Press, John Wiley and Sons: Letchworth, England, 1986.

[71]. Gutman, I.; Randic, M. Chem. Phys. Lett. 1977, 47, 15-19.
http://dx.doi.org/10.1016/0009-2614(77)85296-2

[72]. Wiener, H. J. Am. Chem. Soc. 1947, 69(1), 17-20.
http://dx.doi.org/10.1021/ja01193a005
PMid:20291038

[73]. Kier, L. B. Quant. Struc. Act. Relat. 1985, 4, 109-116.
http://dx.doi.org/10.1002/qsar.19850040303

[74]. Kier L. B.; Hall, L. H. Molecular Structure Description: The Electrotopological State, Academic Press, New York, 1999.

[75]. Balaban, A. Chem. Phys. Lett. 1982, 89(5), 399-404.
http://dx.doi.org/10.1016/0009-2614(82)80009-2

[76]. Hu, Q. N.; Liang, Y. Z. Internet Electron. J. Mol. Des. 2004, 3(6), 335-349.

[77]. Barysz, M.; Plavsic, D.; Trinajstic, N. Match. 1986, 19, 89-116.

[78]. Estrada, E. Chem. Phys. Lett. 2008, 463(4-6), 422-425.
http://dx.doi.org/10.1016/j.cplett.2008.08.074

[79]. Taherpour A. A.; Shafiee, F. J. Mol. Struct., Theochem. 2005, 726, 183-188.
http://dx.doi.org/10.1016/j.theochem.2005.03.053

[80]. Hansch, C.; Leo, A.; Hoekman, D. Exploring QSAR: Hydrophobic, Electronic, Steric Constants, ACS, Washington, DC, USA, 1995.

[81]. Bundy, J. G.; Morriss, A. W. J.; Durham, D. G.; Campbell C. D.; Paton, G. I. Chemosphere. 2001, 42, 885-892.
http://dx.doi.org/10.1016/S0045-6535(00)00178-8

[82]. Li, A.; Yalkowsky, S. H. Ind. Eng. Chem. Res. 1998, 37, 4470-4475.
http://dx.doi.org/10.1021/ie980232v

[83]. Bolboaca, S. D.; Jantschi, L. Int. J. Mol. Sci. 2007, 8, 335-345.
http://dx.doi.org/10.3390/i8040335

[84]. Slanina, Z.; Chao, M. C.; Lee, S. L.; Gutman, I. J. Serb. Chem. Soc. 1997, 62(3), 211-217.

[85]. Plavsic, D.; Nikolic, S.; Trinajstic, N.; Mihalic, Z. J. Math. Chem. 1993, 12, 235-250.
http://dx.doi.org/10.1007/BF01164638

[86]. Taherpour, A. A. Full., Carb. Nanot., Carb. Nanostruct. 2007, 15, 405-415.
http://dx.doi.org/10.1080/15363830701657776

[87]. Taherpour, A. A. Full., Carb. Nanot., Carb. Nanostruct. 2008, 16(2), 142-153.
http://dx.doi.org/10.1080/15363830801890582

[88]. Taherpour, A. A. Full., Carb. Nanot., Carb. Nanostruct. 2009, 17(2), 171- 186.
http://dx.doi.org/10.1080/15363830802672096

[89]. Taherpour, A. A.; Asadi, T. Full., Carb. Nanot., Carb. Nanostruct. 2011, 19, 166-181.
http://dx.doi.org/10.1080/15363831003782882

[90]. Taherpour, A. A. Phosph. Sulf. Silic. 2010, 185, 422-432.
http://dx.doi.org/10.1080/10426500902812415

[91]. Murata, Y.; Motoyama, K.; Komatsu, K.; Wan, T. S. M. Tetrahedron 1996, 52, 5077-5090
http://dx.doi.org/10.1016/0040-4020(96)00115-9

[92]. Rehm, A.; Weller, A. Isr. J. Chem. 1970, 8, 259-271.

[93]. Marcus, R. A. Modern Phys. 1993, 65(3), 599-610.
http://dx.doi.org/10.1103/RevModPhys.65.599

[94]. Andrea, M. Marcus Theory for Electron Transfer a short introduction MPIP-Journal Club-Mainz-January 29, 2008.

[95]. Barbara P. F. J. Phys. Chem. 1996, 100, 13148-13161.

[96]. Newton, M. D. Chem. Rev. 1991, 91, 767-792.
http://dx.doi.org/10.1021/cr00005a007

[97]. Jortner, J.; Freed, K. F. J. Chem. Phys. 1970, 52, 6272-6291.

[98]. Marcus, R. A. J. Chem. Phys. 1965, 43, 679-701.

[99]. Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta. 1985, 811, 265-322.
http://dx.doi.org/10.1016/0304-4173(85)90014-X

[100]. Kuzmin, M. G. XVIIth IUPAC Symposium on Photochemistry, Dresden, German, July 22-27, 2000, Book of Abstracts, p. 372.

Supporting Agencies

Islamic Azad University, Arak, Iran
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).