European Journal of Chemistry

Theoretical density functional study of gas-phase tautomerization and acidity of 5-methylhydantoin and its thio derivatives



Main Article Content

Zaki Sulieman Safi

Abstract

Tautomerization and acidities of various 5-methylhydantoins and their thio derivatives were predicted using Density Functional Theory (DFT). The functional used was B3LYP and the basis set for all atoms was 6-311+(d,p). Single point energy computations were performed at the 6-311+G(2df,2p) basis set. The relative stabilities of the different tautomers of the 2,4-dioxo, 2-thio-4-oxo, 4-thio-2-oxo and 2,4-dithio derivatives of the deprotonated 5-methylhydantoin have been studied. In all cases, the most stable deprotonated conformers are the oxo-thione, the dioxo or the dithio. As for the neutral and the protonated 5-methylhydantoin-thio derivatives, the tautomerization activation barriers are high enough as to conclude that the oxo-thione structures should be found in the gas phase. It was revealed that the ring-nitrogen atom at position 3 (N3) is more acidic than that at position 1 (N1), hence 5-methylhydantoin thio derivatives in the gas phase are an N3-acid. It has been found that the 2,4-dithio species is the most acidic compound among all the investigated compounds. The acidity values were found to be 343 (2O4O), 337 (2S4O), 336 (2O4S) and 332 kcal/mol (2S4S).

3_3_348_355_800


icon graph This Abstract was viewed 1584 times | icon graph Article PDF downloaded 711 times

How to Cite
(1)
Safi, Z. S. Theoretical Density Functional Study of Gas-Phase Tautomerization and Acidity of 5-Methylhydantoin and Its Thio Derivatives. Eur. J. Chem. 2012, 3, 348-355.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Smith, B. J.; Radom, L. J. Am. Chem. Soc. 1992, 114, 36-41.
http://dx.doi.org/10.1021/ja00027a004

[2]. Smith, B. J.; Radom, L. J. Am. Chem. Soc. 1993, 115, 4885-4888.
http://dx.doi.org/10.1021/ja00064a058

[3]. Whittleton, S. R.; Hunter, K. C.; Wetmore, S. D. J. Phys. Chem. A 2004, 108, 7709-7718.
http://dx.doi.org/10.1021/jp048318r

[4]. Nohodchi, A.; Bolourtchian, N.; Dinarvand, R. Int. J. Pharm. 2003, 250, 85-97.
http://dx.doi.org/10.1016/S0378-5173(02)00488-X

[5]. Nguyen, M. T.; Chandra, A. K.; Zeegers-Huyskens, T. J. Chem. Soc., Faraday Trans. 1998, 94, 1277-1280.

[6]. Lamsabhi, M.; Alcami, M.; Mo, O.; Yanez, M. J. Phys. Chem. A 2006, 110, 1943-1950.
http://dx.doi.org/10.1021/jp055163u
PMid:16451028

[7]. Remko, M.; Lyne, P. D.; Richards, W. G. Phys. Chem. Chem. Phys. 1999, 1, 5353-5357.
http://dx.doi.org/10.1039/a906667e

[8]. Lamsabhi, M.; Alcami, M.; Mo, O.; Bouab, W.; Esseffar, M.; Abboud, J. L. -M.; Yanez, M. J. Phys. Chem. A 2000, 104, 5122-5130.
http://dx.doi.org/10.1021/jp000071k

[9]. Mo, O.; De Paz, J. L. G.; Yanez, M. J. Phys. Chem. 1986, 90, 5597-5604.
http://dx.doi.org/10.1021/j100280a024

[10]. Dang, P.; Madan, A. K. J. Chem. Inf. Comput. Sci. 1994, 34, 1162-1166.
http://dx.doi.org/10.1021/ci00021a024

[11]. Klainpeter, E. Struct. Chem. 1997, 8, 161-165.
http://dx.doi.org/10.1007/BF02262852

[12]. Klainpeter, E.; Heydenreich, M.; Kalder, L.; Koch, A.; Henning, D.; Kempter, G.; Benassi, R.; Taddei, F. J. Mol. Struct. 1997, 403, 111-122.
http://dx.doi.org/10.1016/S0022-2860(96)09403-3

[13]. Camerman, K.; Camerman, N. Acta Cryst. B 1971, 27, 2205-2211.
http://dx.doi.org/10.1107/S0567740871005570

[14]. Simig, G.; Lemport, K.; Tamas, J.; Czria, G. Tetrahedron 1975, 31, 1195-1200.
http://dx.doi.org/10.1016/0040-4020(75)85056-3

[15]. Yadav, A.; Yadav, V. K. J. Mol. Struct. (Theochem) 1994, 315, 245-251.
http://dx.doi.org/10.1016/0166-1280(94)03777-I

[16]. Yadav, A.; Yadav, V. K. J. Mol. Struct. (Theochem) 1994, 315, 245-251.
http://dx.doi.org/10.1016/0166-1280(94)03777-I

[17]. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Jensen, J. H.; Koseki, S.; Gordon, M. S.; Nguyen, K. A.; Windus, T. L.; Albert, S. T. QCPE Bull. 1990, 10, 52-54.

[18]. Safi, Z. S.; Abu-Awwad, F. E-J. Chem. 2008, 5, 884-893.

[19]. Safi, Z. S.; Frenking, G. Int. J. Quantum Chem. 2012, In press, DOI: 10.1002/qua.24017.
http://dx.doi.org/10.1002/qua.24017

[20]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

[21]. Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1994.

[22]. Neumann, R.; Nobes, R. H.; Handy, N. C. Mol. Phys. 1996, 97, 1-36.
http://dx.doi.org/10.1080/00268979600100011

[23]. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
http://dx.doi.org/10.1103/PhysRevA.38.3098
PMid:9900728

[24]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.

[25]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
http://dx.doi.org/10.1103/PhysRevB.37.785

[26]. Gill, P. M. W.; Johnson, B. G.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1992, 197, 499-505.
http://dx.doi.org/10.1016/0009-2614(92)85807-M

[27]. Kapp J.; Remko, M.; Schleyer, P. v. P. J. Am. Chem. Soc. 1996, 118, 5745-5751.
http://dx.doi.org/10.1021/ja953846p

[28]. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502-16513.
http://dx.doi.org/10.1021/jp960976r

[29]. Del Bene, J. E. J. Phys. Chem. 1993, 97, 107-110.
http://dx.doi.org/10.1021/j100103a020

[30]. Puszynska-Tuszkanow, M.; Daszkiewicz, M.; Maciejewska, G.; Adach, A.; Cieslak-Golonka, M. Struct. Chem. 2010, 21, 315-332.
http://dx.doi.org/10.1007/s11224-009-9533-x

[31]. Vendano, C.; Menendez, J. C. In Hydantoin and Its Derivatives. Kirk-Othmer’s Encyclopedia of Chemical Technology, 2000, 13, 512-533.

[32]. Meot-Ner (Mautner), M. J. J. Am. Chem. Soc. 1988, 110, 3071-3075.
http://dx.doi.org/10.1021/ja00218a013

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).