European Journal of Chemistry

Band edge positions as a key parameter to a systematic design of heterogeneous photocatalyst

Crossmark


Main Article Content

Eshraq Ahmed Abdullah

Abstract

Although, plenty of photocatalytic approaches have been developed in the past few decades to overcome major drawbacks, such as; wide band gap and fast volume/surface recombination of the charge carriers, the researchers still need to carry out careful systematic studies before conducting experiments based on physicochemical properties of a system. Thus, in this review, a detailed discussion of the band edge positions controlling the migration and charge separation of the produced charged carriers and its impact onto the photocatalytic systems are provided. The knowledge of band edge positions is a crucial prerequisite to a rational design of an efficient photocatalytic system. The enhancement mechanism should match these criteria to be reliable in the field of heterogeneous photocatalysis science.


icon graph This Abstract was viewed 1567 times | icon graph Article PDF downloaded 659 times

How to Cite
(1)
Abdullah, E. A. Band Edge Positions As a Key Parameter to a Systematic Design of Heterogeneous Photocatalyst. Eur. J. Chem. 2019, 10, 82-94.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Guo, S.; Deng, Z.; Li, M.; Jiang, B.; Tian, C.; Pan, Q.; Fu, H. Angew. Chem. 2016, 128, 1862-1866.
https://doi.org/10.1002/ange.201508505

[2]. Wu, Z.; Yuan, X.; Zeng, G.; Jiang, L.; Zhong, H.; Xie, Y.; Wang, H.; Chen, X.; Wang, H. Appl. Catal. B: Environ. 2018, 225, 8-21.
https://doi.org/10.1016/j.apcatb.2017.11.040

[3]. Zhang, X.; Qin, J.; R.; Hao, Wang, L.; Shen, X.; Yu, R.; Limpanart, S.; Ma, M.; Liu, R. J. Phys. Chem. C 2015, 119, 20544-20554.
https://doi.org/10.1021/acs.jpcc.5b07116

[4]. Lee, J.; Shim, H. S.; Lee, M.; Song, J. K.; Lee, D. J. Phys. Chem. Lett. 2011, 2, 2840-2845.
https://doi.org/10.1021/jz2013352

[5]. Siuleiman, S.; Kaneva, N.; Bojinova, A.; Dimitrov, D.; Papazova, K. Bulg. Chem. Commun. 2017, 49, 199-204.

[6]. Liu, H.; Li, M.; Yang, J.; Hu, C.; Shang, J.; Zhai, H. Mater. Res. Bull. 2018, 106, 19-27.
https://doi.org/10.1016/j.materresbull.2018.05.026

[7]. Lou, Z. Z.; Kim, S.; Fujitsuka, M.; Yang, X.; Li, B. Adv. Funct. Mater. 2018, 28, 1706969.
https://doi.org/10.1002/adfm.201706969

[8]. Wang, J.; Tang, L.; Zeng, G.; Deng, Y.; Dong, H.; Liu, Y.; Wang, L.; Peng, B.; Zhang, C.; Chen, F. Appl. Cata. B-Environ. 2018, 222, 115-123.

[9]. Rajabi, H. R. Photocatalytic Activity of Quantum Dots, in: Semiconductor Photocatalysis-Materials, Mechanisms and Applications, InTechopen, 2016.
https://doi.org/10.5772/63435

[10]. Reiss, P.; Protiere, M.; Li, L. Small 2009, 5, 154-168.
https://doi.org/10.1002/smll.200800841

[11]. Shamsipur, M.; Rajabi, H. R.; Khani, O. Mater. Sci. Semicond. Process. 2013, 16, 1154-1161.
https://doi.org/10.1016/j.mssp.2013.02.010

[12]. Kandi, D.; Martha, S.; Parida, K. Int. J. Hydrogen Energy 2017, 42, 9467-9481.
https://doi.org/10.1016/j.ijhydene.2017.02.166

[13]. Lazar, M.; Varghese, S.; Nair, S. Catalysts 2012, 2, 572-601.
https://doi.org/10.3390/catal2040572

[14]. Atkins, P.; De Paula, J. Atkins' Physical Chemistry, 9th Edition, Oxford University Press, 2009.

[15]. Ren, X. F.; Zhang, J.; Kang, G. J. J. Nanomater. 2015, 2015, Article ID 605728, 9 pages.

[16]. Zhang, X.; Chen, Y. L.; Liu, R. -S.; Tsai, D. P. Rep. Prog. Phys. 2013, 76, 046401.
https://doi.org/10.1088/0034-4885/76/4/046401

[17]. Makama, A. B.; Umar, M.; Saidu, S. A. CQD-Based Composites as Visible-Light Active Photocatalysts for Purification of Water, InTechopen, 2018.
https://doi.org/10.5772/intechopen.74245

[18]. Linsebigler, A. L.; Lu, G.; Yates Jr, J. T. Chem. Rev. 1995, 95, 735-758.
https://doi.org/10.1021/cr00035a013

[19]. Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; S.; Li, Z.; Wang, J. Liu; Wang, X. Chem. Soc. Rev. 2014, 43, 5234-5244.
https://doi.org/10.1039/C4CS00126E

[20]. Magalhaes, P.; Andrade, L.; Nunes, O. C.; Mendes, A. Rev. Adv. Mater. Sci. 2017, 51, 91-129.

[21]. Zhang, J.; Wang, Y.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, ACS Appl. Mater. Interfaces 2013, 5, 10317-10324.
https://doi.org/10.1021/am403327g

[22]. Hosseinpour-Mashkani, S. M.; Maddahfar, M.; Sobhani-Nasab, A. J. Mater. Sci. Mater. Electron. 2016, 27, 474-480.
https://doi.org/10.1007/s10854-015-3776-7

[23]. Ma, D.; Shi, J. W.; Zou, Y.; Fan, Z.; Ji, X.; Niu C. ACS appl. Mater. Interfaces 2017, 9, 25377-25386.
https://doi.org/10.1021/acsami.7b08407

[24]. Ikram S. Arch. Med. 2016, 2, 1-10.

[25]. Maeda, K.; Domen, K. J. Phys. Chem. Lett. 2010, 1, 2655-2661.
https://doi.org/10.1021/jz1007966

[26]. Elaziouti, A.; Laouedj, N.; Bekka, A.; Vannier, R. N. J. King Saud. Univ. Sci. 2015, 27, 120-135.
https://doi.org/10.1016/j.jksus.2014.08.002

[27]. Beranek, R. Adv. Phys. Chem. 2011, 2011, 1-20.

[28]. Wang, Y.; Zhang, R.; Li, J.; Li, L.; Lin, S. Nanoscale Res. Lett. 2014, 9, 46, 1-8.

[29]. Huang, H.; Wang, S.; Zhang, Y.; Chu, P. K. Rsc. Adv. 2014, 4, 41219-41227.
https://doi.org/10.1039/C4RA05708B

[30]. Xu, Y.; Schoonen, M. A. Am. Mineral. 2000, 85, 543-556.
https://doi.org/10.2138/am-2000-0416

[31]. Li, L.; Liu, X.; Zhang, Y.; N. T.; Nuhfer, K.; Barmak, Salvador, P. A.; Rohrer, G. S. ACS Appl. Mater. Interfaces 2013, 5, 5064-5071.
https://doi.org/10.1021/am4008837

[32]. Liu, S.; Chen, J.; Xu, D.; Zhang, X.; Shen, M. J. Mater. Res. 2018, 33, 1391-1400.
https://doi.org/10.1557/jmr.2018.67

[33]. Chen, F.; Yang, Q.; Li, X.; Zeng, G.; Wang, D.; Niu, C.; Zhao, J.; An, H.; Xie, T.; Deng, Y. Appl. Catal. B. Environ. 2017, 200, 330-342.
https://doi.org/10.1016/j.apcatb.2016.07.021

[34]. Khanchandani, S.; Kundu, S.; Patra, A.; Ganguli, A. K. J. Phys. Chem. C 2013, 117, 5558-5567.
https://doi.org/10.1021/jp310495j

[35]. Marschall, R. Adv. Funct. Mater. 2014, 24, 2421-2440.
https://doi.org/10.1002/adfm.201303214

[36]. Jang, J. S.; Ahn, C. W.; Won, S. S.; Kim, J. H.; Choi, W.; Lee, B. S.; Yoon, J. H.; Kim, H. G.; Lee, J. S. J. Phys. Chem. C 2017, 121, 15063-15070.
https://doi.org/10.1021/acs.jpcc.7b03081

[37]. Zhang, Z.; Lin, S.; Li, X.; Li, H.; Zhang, T.; Cui, W. Nanomaterials 2018, 8, 330.
https://doi.org/10.3390/nano8050330

[38]. Ran, J.; Ma, T. Y.; Gao, G.; Du, X. W.; Qiao, S. Z. Energy Environ. Sci. 2015, 8, 3708-3717.
https://doi.org/10.1039/C5EE02650D

[39]. Guo, L.; Yang, Z.; Marcus, K.; Li, Z., Luo, B.; Zhou, L.; Wang, X.; Du, Y.; Yang, Y. Energy Environ. Sci. 2018, 11, 106-114.
https://doi.org/10.1039/C7EE02464A

[40]. Qiu, B.; Zhu, Q.; Du, M.; Fan, L.; M.; Xing, Z. J. Angew. Chem. 2017, 129, 2728-2732.
https://doi.org/10.1002/ange.201612551

[41]. Zhang, Z.; Jiang, D.; Li, D.; M.; He, Chen, M. Appl. Catal. B: Environ. 2016, 183, 113-123.
https://doi.org/10.1016/j.apcatb.2015.10.022

[42]. Zou, Y.; Shi, J. W.; Ma, D.; Fan, Z.; L.; Cheng, Sun, D.; Wang, Z.; Niu, C. Chem. Sus. Chem. 2018, 11, 1187-1197.
https://doi.org/10.1002/cssc.201800053

[43]. Ola, O.; Maroto-Valer, M. M. J. Photochem. Photobiol. C 2015, 24, 16-42.
https://doi.org/10.1016/j.jphotochemrev.2015.06.001

[44]. Huang, F.; Yan, A.; Zhao, H. Influences of doping on photocatalytic properties of TiO2 photocatalyst, in: Semiconductor Photocatalysis-Materials, Mechanisms and Applications, InTech, 2016.
https://doi.org/10.5772/63234

[45]. Wang, M.; Ye, M.; Iocozzia, J.; Lin, C.; Lin, Z. Adv. Sci. 2016, 3, 1600024.
https://doi.org/10.1002/advs.201600024

[46]. Tatsuma, T.; Nishi, H.; Ishida, T. Chem. Sci. 2017, 8, 3325-3337.
https://doi.org/10.1039/C7SC00031F

[47]. Islam, S. Z.; Nagpure, S.; Kim, D. Y.; Rankin, S. E. Inorganics 2017, 5, 15.
https://doi.org/10.3390/inorganics5010015

[48]. Teka, T. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2015, 3, 2347-4289.

[49]. Yu, W.; Zhang, J.; Peng, T. Appl. Catal. B: Environ. 2016, 181, 220-227.
https://doi.org/10.1016/j.apcatb.2015.07.031

[50]. Serpone, N. J. Phys. Chem. B 2006, 110, 24287-24293.
https://doi.org/10.1021/jp065659r

[51]. Park, H.; Park, Y.; Kim, W.; Choi, W. J. Photochem. Photobiol. C 2013, 15, 1-20.
https://doi.org/10.1016/j.jphotochemrev.2012.10.001

[52]. Dai, K.; Peng, T.; Ke, D.; Wei, B. Nanotechnology 2009, 20, 125603.
https://doi.org/10.1088/0957-4484/20/12/125603

[53]. Rawal, S. B.; Bera, S.; Lee, D.; Jang, D. J.; Lee, W. I. Catal. Sci. Technol. 2013, 3, 1822-1830.
https://doi.org/10.1039/c3cy00004d

[54]. Baransi, K.; Dubowski, Y.; Sabbah, I. Water Res. 2012, 46, 789-798.
https://doi.org/10.1016/j.watres.2011.11.049

[55]. Bouazza, N.; Ouzzine, M.; Lillo-Rodenas, M.; Eder, Linares-Solano, D.; A. Appl. Catal. B: Environ. 2009, 92, 377-383.
https://doi.org/10.1016/j.apcatb.2009.08.017

[56]. Jiang, D.; Irfan, R. M.; Sun, Z.; Lu, D.; Du, P. Chem. Sus. Chem. 2016, 9, 3084-3092.
https://doi.org/10.1002/cssc.201600871

[57]. Moniz, S. J.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. Energy Environ. Sci. 2015, 8, 731-759.
https://doi.org/10.1039/C4EE03271C

[58]. Paul, K.; Giri, P. Plasmonic Metal and Semiconductor Nanoparticle Decorated TiO2 -Based Photocatalysts for Solar Light Driven Photocatalysis, in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2017.

[59]. Qi, K.; Cheng, B.; Yu, J.; Ho, W. Chinese J. Catal. 2017, 38, 1936-1955.
https://doi.org/10.1016/S1872-2067(17)62962-0

[60]. Li, H.; Tu, W.; Zhou, Y.; Zou, Z. Adv. Sci. 2016, 3, 1500389.
https://doi.org/10.1002/advs.201500389

[61]. Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Wu, Z.; Wang, H. Environ. Sci. Nano 2018, 5, 599-615.
https://doi.org/10.1039/C7EN01031A

[62]. Xu, Z.; Kibria, M. G.; AlOtaibi, B.; Duchesne, P. N.; Besteiro, L. V.; Gao, Y.; Zhang, Q.; Mi, Z.; Zhang, P.; Govorov, A. O.; Mai, L.; Chaker, M.; Ma, D. Appl. Catal. B: Environ. 2018, 221, 77-85.
https://doi.org/10.1016/j.apcatb.2017.08.085

[63]. Lou, Z.; Zhu, M.; Yang, X.; Zhang, Y.; M. -H. Appl. Catal. B: Environ. 2018, 226, 10-15.
https://doi.org/10.1016/j.apcatb.2017.12.023

[64]. Fan, W.; Leung, M. K. H. Molecules 2016, 21, 180.
https://doi.org/10.3390/molecules21020180

[65]. Nguyen, B. H.; Nguyen, V. H. Adv. Nat. Sci-Nanosci. 2015, 6, 043001.

[66]. Xie, L.; Ai, Z.; Zhang, M.; Sun, R.; Zhao, W. PloS One 2016, 11, e0161397.
https://doi.org/10.1371/journal.pone.0161397

[67]. Khan, M. R.; Chuan, T. W.; Yousuf, A.; Chowdhury, M.; Cheng, C. K. Catal. Sci. Technol. 2015, 5, 2522-2531.
https://doi.org/10.1039/C4CY01545B

[68]. Erwin, W. R.; Zarick, H. F.; Talbert, E. M.; Bardhan, R. Energy Environ. Sci. 2016, 9, 1577-1601.
https://doi.org/10.1039/C5EE03847B

[69]. Colmenares, J. C.; . Luque, R; Campelo, J. M.; Colmenares, F.; Karpinski, Z.; Romero, A. A. Materials 2009, 2, 2228-2258.
https://doi.org/10.3390/ma2042228

[70]. Buzea, C.; Pacheco, I. I.; Robbie, K. Biointerphases 2007, 2, MR17-MR71.
https://doi.org/10.1116/1.2815690

[71]. Lin, H.; Huang, C.; Li, W.; Ni, C.; Shah, S. I.; Tseng, Y. -H. Appl. Catal. B: Environ. 2006, 68, 1-11.
https://doi.org/10.1016/j.apcatb.2006.07.018

[72]. Bera, D.; Qian, L.; Tseng, T. -K.; Holloway, P. H. Materials, 2010, 3, 2260-2345.
https://doi.org/10.3390/ma3042260

[73]. Rajabi, H. R.; Karimi, F.; Kazemdehdashti, H.; Kavoshi, L. J. Photochem. Photobiol. B, Biol. 2018, 181, 98-105.

[74]. Kundu, S.; Patra, A. Chem. Rev. 2016, 117, 712-757.
https://doi.org/10.1021/acs.chemrev.6b00036

[75]. Sarkar, S.; Sardar, S.; Makhal, A.; Dutta, J.; Pal, S. K. Engineering FRET-based solar cells: manipulation of energy and electron transfer processes in a light harvesting assembly, in: High-Efficiency Solar Cells, Springer, 2014.
https://doi.org/10.1007/978-3-319-01988-8_10

[76]. Wu, P.; Yan, X. P. Chem. Soc. Rev. 2013, 42, 5489-5521.
https://doi.org/10.1039/c3cs60017c

[77]. Li, J.; Cushing, S. K.; Meng, F.; Senty, T. R.; Bristow, A. D.; Wu, N. Nat. Photonics, 2015, 9(9), 601-607.
https://doi.org/10.1038/nphoton.2015.142

[78]. Chen, Y.; Lu, Q.; Yan, X.; Mo, Q.; Chen, Y.; Liu, B.; Teng, L.; Xiao, W.; Ge, L.; Wang, Q. Nanoscale Res. Lett. 2016, 11, 60.
https://doi.org/10.1186/s11671-016-1262-7

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).