European Journal of Chemistry 2022, 13(3), 337-350 | doi: https://doi.org/10.5155/eurjchem.13.3.337-350.2297 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Electronic band structure of Bi5O7NO3 and its methyl orange removal mechanism


Eshraq Ahmed Abdullah (1,*) orcid

(1) Department of Chemistry, Faculty of Education, Taiz University, Taiz, 009674, Yemen
(*) Corresponding Author

Received: 21 Jun 2022 | Revised: 15 Jul 2022 | Accepted: 23 Jul 2022 | Published: 30 Sep 2022 | Issue Date: September 2022

Abstract


A detailed study of the electronic band structures and partial density of states of Bi5O7NO3 with different exchange correlation functionals was performed using the generalized gradient approximation. Bi5O7NO3 has two direct energy gap transitions of 2.84 and 3.66 eV at the experimental lattice parameters, revealing a semiconductor characteristic of a crystal. Molecular Mechanics; however, tends to underestimate the band-gap energies with indirect characters. This deviation is due to the slight decrease in the cell edges and the significant increase in the β angle during the optimization process. The mechanism of removal of methyl orange and its derivatives by the Bi5O7NO3 unit cell, which has the same experimental UV-Vis band gap, was later investigated through a DMol3 module. To do that, frontier molecular orbitals, global reactivity parameters, and electrostatic potential surface maps were evaluated. The high values of the electrophilicity indexes hint that the dyes are more reactive and can work as good electrophile species. A molecular packing of dye molecules and the ionic natural of Bi5O7NO3 generate a synergistic effect between π-π stacking, anion-π stacking, cation-π stacking and electrostatic interactions, which are thought to be the driven forces during dye removal.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization between November 15, 2022 and December 28, 2022 (Voucher code: SINGLE2022).

2. Young writers will not be charged for the article processing fee between November 15, 2022 and December 28, 2022 (Voucher code: YOUNG2022).

3. The article processing fee will not be charged from the articles containing a part of the PhD thesis between November 15, 2022 and December 28, 2022 (Voucher code: PhD2022).

4. The article processing fee will not be charged from authors who have at least one publication in the European Journal of Chemistry between November 15, 2022 and December 28, 2022 (Voucher code: (Voucher code: AUTHOR2022).

Editor-in-Chief

European Journal of Chemistry

Keywords


Bi5O7NO3; π-π Stacking; Semiconductor; Electrostatic interactions; Electronic band structure; Electrostatic potential surface

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.13.3.337-350.2297

Links for Article


| | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 128 times | icon graph PDF Article downloaded 34 times


References


[1]. Abdullah, A. H.; Abdullah, E. A.; Zainal, Z.; Hussein, M. Z.; Ban, T. K. Adsorptive performance of penta-bismuth hepta-oxide nitrate, Bi₅O₇NO₃, for removal of methyl orange dye. Water Sci. Technol. 2012, 65, 1632-1638.
https://doi.org/10.2166/wst.2012.057

[2]. Gadhi, T. A.; Hernández, S.; Castellino, M.; Jagdale, P.; Husak, T.; Hernández-Gordillo, A.; Tagliaferro, A.; Russo, N. Insights on the role of β-Bi2O3/Bi5O7NO3 heterostructures synthesized by a scalable solid-state method for the sunlight-driven photocatalytic degradation of dyes. Catal. Today 2019, 321-322, 135-145.
https://doi.org/10.1016/j.cattod.2017.12.038

[3]. Abdullah, E. A.; Abdullah, A. H.; Zainal, Z.; Hussein, M. Z.; Ban, T. K. Synthesis and characterisation of penta-bismuth hepta-oxide nitrate, Bi5O7NO3, as a new adsorbent for methyl orange removal from an aqueous solution. E-J. Chem. 2012, 9, 2429-2438.
https://doi.org/10.1155/2012/707853

[4]. Yu, S.; Zhang, G.; Gao, Y.; Huang, B. Single-crystalline Bi(5)O(7)NO(3) nanofibers: Hydrothermal synthesis, characterization, growth mechanism, and photocatalytic properties. J. Colloid Interface Sci. 2011, 354, 322-330.
https://doi.org/10.1016/j.jcis.2010.10.012

[5]. Mikkelsen, A. E. G.; Bölle, F. T.; Thygesen, K. S.; Vegge, T.; Castelli, I. E. Band structure of MoSTe Janus nanotubes. Phys. Rev. Mater. 2021, 5, 014002.
https://doi.org/10.1103/PhysRevMaterials.5.014002

[6]. Es-Smairi, A.; Fazouan, N.; Joshi, H.; Atmani, E. H. First-principles calculations to investigate electronic, optical, thermodynamic and thermoelectric properties of new Na6ZnX4 (X=O, S, Se) ternary alloys. J. Phys. Chem. Solids 2022, 160, 110305.
https://doi.org/10.1016/j.jpcs.2021.110305

[7]. Ziegler, P.; Ströbele, M.; Meyer, H.-J. Crystal structure of pentabismuth heptaoxide nitrate, Bi5O7NO3. Z. Krist. - New Cryst. Struct. 2004, 219, 91-92.
https://doi.org/10.1524/ncrs.2004.219.2.91

[8]. Liu, X.; Zhang, W.; Mao, L.; Yin, Y.; Hu, L. Synthesis of FeOCl-MoS2 with excellent adsorption performance for methyl orange. J. Mater. Sci. 2021, 56, 6704-6718.
https://doi.org/10.1007/s10853-020-05715-y

[9]. Pinheiro, L. R. S.; Gradíssimo, D. G.; Xavier, L. P.; Santos, A. V. Degradation of azo dyes: Bacterial potential for bioremediation. Sustainability 2022, 14, 1510.
https://doi.org/10.3390/su14031510

[10]. Liu, Y.; Li, C.; Bao, J.; Wang, X.; Yu, W.; Shao, L. Degradation of azo dyes with different functional groups in simulated wastewater by electrocoagulation. Water (Basel) 2022, 14, 123.
https://doi.org/10.3390/w14010123

[11]. Oukebdane, K.; Necer, I. L.; Didi, M. A. Binary comparative study adsorption of anionic and cationic Azo-dyes on Fe3O4-Bentonite magnetic nanocomposite: Kinetics, Equilibrium, Mechanism and Thermodynamic study. Silicon 2022, 1-14.
https://doi.org/10.1007/s12633-022-01710-x

[12]. Bekhoukh, A.; Moulefera, I.; Zeggai, F. Z.; Benyoucef, A.; Bachari, K. Anionic methyl orange removal from aqueous solutions by activated carbon reinforced conducting polyaniline as adsorbent: Synthesis, characterization, adsorption behavior, regeneration and kinetics study. J. Polym. Environ. 2022, 30, 886-895.
https://doi.org/10.1007/s10924-021-02248-6

[13]. Materials Studio package, BIOVIA, San Diego: Dassault Systemes, USA, 2017. https://www.3ds.com/products-services/biovia/products/ molecular-modeling-simulation/ (accessed July 23, 2022).

[14]. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756-7764.
https://doi.org/10.1063/1.1316015

[15]. Delley, B. An all‐electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508-517.
https://doi.org/10.1063/1.458452

[16]. Singh, P.; Harbola, M. K. Density-functional theory of material design: fundamentals and applications-I. Oxford Open Materials Science 2020, 1, itab018 https://doi.org/10.1093/oxfmat/itab018.
https://doi.org/10.1093/oxfmat/itab018

[17]. Kratzer, P.; Neugebauer, J. The basics of electronic structure theory for periodic systems. Front. Chem. 2019, 7, 106.
https://doi.org/10.3389/fchem.2019.00106

[18]. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865

[19]. Wu, Z.; Cohen, R. E. More accurate generalized gradient approximation for solids. Physical Review B 73, 235116.
https://doi.org/10.1103/PhysRevB.73.235116

[20]. Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B Condens. Matter 1996, 54, 16533-16539.
https://doi.org/10.1103/PhysRevB.54.16533

[21]. Russo, T. V.; Martin, R. L.; Hay, P. J. Density functional calculations on first‐row transition metals. J. Chem. Phys. 1994, 101, 7729-7737.
https://doi.org/10.1063/1.468265

[22]. Boese, A. D.; Martin, J. M. L.; Handy, N. C. The role of the basis set: Assessing density functional theory. J. Chem. Phys. 2003, 119, 3005-3014.
https://doi.org/10.1063/1.1589004

[23]. Wu, W.; Al-Ostaz, A.; Cheng, A. H.-D.; Song, C. R. Computation of Elastic Properties of Portland Cement Using Molecular Dynamics. J. Nanomech. Micromech 1, 84-90.
https://doi.org/10.1061/(ASCE)NM.2153-5477.0000026

[24]. Sun, H.; Ren, P.; Fried, J. R. The COMPASS force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229-246.
https://doi.org/10.1016/S1089-3156(98)00042-7

[25]. Boese, A. D.; Martin, J. M. L. Development of density functionals for thermochemical kinetics. J. Chem. Phys. 2004, 121, 3405-3416.
https://doi.org/10.1063/1.1774975

[26]. Ganzenmüller, G.; Berkaïne, N.; Fouqueau, A.; Casida, M. E.; Reiher, M. Comparison of density functionals for differences between the high- (5T2g) and low- (1A1g) spin states of iron(II) compounds. IV. Results for the ferrous complexes [Fe(L)('NHS4')]. J. Chem. Phys. 2005, 122, 234321.
https://doi.org/10.1063/1.1927081

[27]. Borlido, P.; Aull, T.; Huran, A. W.; Tran, F.; Marques, M. A. L.; Botti, S. Large-scale benchmark of exchange-correlation functionals for the determination of electronic band gaps of solids. J. Chem. Theory Comput. 2019, 15, 5069-5079.
https://doi.org/10.1021/acs.jctc.9b00322

[28]. Mkpenie, V.; Abakedi, O. Silicon halide perovskite for efficient sunlight harvesting in solar cells: Insights from first-principles. J. Appl. Sci. Technol. 2018, 10, 78-85 http://wojast.org/wp-content/uploads/ Vol10-1/78_85_Mkpenie-et-al.pdf.

[29]. Owolabi, J. A.; Onimisi, M. Y.; Abdu, S. G.; Olowomofe, G. O. Determination of band structure of gallium-arsenide and aluminium-arsenide using density functional theory. Comput. chem. 2016, 04, 73-82.
https://doi.org/10.4236/cc.2016.43007

[30]. Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814-6817.
https://doi.org/10.1021/acs.jpclett.8b02892

[31]. Ibrahim, M. M.; Sani, H. R.; Yahuza, K. M.; Yusuf, A. H.; Bungudu, A. B. Response surface optimization and modeling of caffeine photocatalytic degradation using visible light responsive perovskite structured LaMnO3. Eur. J. Chem. 2021, 12, 289-298.
https://doi.org/10.5155/eurjchem.12.3.289-298.2127

[32]. Saravana, K. J.; John, V. S.; Suja, P.; Rajini, P. Optical and Mechnical Studies of Potassium Nitrate (KNO3) single crystal. Journal of Emerging Technologies and Innovative Research 2019, 6, 549-556 https://www.jetir.org/papers/JETIR1901468.pdf.

[33]. Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.
https://doi.org/10.1021/cr1001645

[34]. Andriyevsky, B.; Ciepluch-Trojanek, W.; Romanyuk, M.; Patryn, A.; Jaskólski, M. Band structure and optical properties of diglycine nitrate crystal. Physica B Condens. Matter 2005, 364, 78-84.
https://doi.org/10.1016/j.physb.2005.03.038

[35]. Cui, D.; Wang, L.; Du, Y.; Hao, W.; Chen, J. Photocatalytic reduction on bismuth-based p-block semiconductors. ACS Sustain. Chem. Eng. 2018, 6, 15936-15953.
https://doi.org/10.1021/acssuschemeng.8b04977

[36]. Huang, H.; He, Y.; Li, X.; Li, M.; Zeng, C.; Dong, F.; Du, X.; Zhang, T.; Zhang, Y. Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+layered photocatalyst: strong intrinsic polarity, rational band structure and 001 active facets co-beneficial for robust photooxidation capability. J. Mater. Chem. A Mater. Energy Sustain. 2015, 3, 24547-24556.
https://doi.org/10.1039/C5TA07655B

[37]. Kalaycı, T.; K. Kınaytürk, N.; Tunalı, B. Experimental and theoretical investigations (FTIR, UV-VIS spectroscopy, HOMO-LUMO, NLO and MEP analysis) of aminothiophenol isomers. Bull. Chem. Soc. Ethiop. 2022, 35, 601-614.
https://doi.org/10.4314/bcse.v35i3.11

[38]. Miar, M.; Shiroudi, A.; Pourshamsian, K.; Oliaey, A. R.; Hatamjafari, F. Theoretical investigations on the HOMO-LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects. J. Chem. Res. 2021, 45, 147-158.
https://doi.org/10.1177/1747519820932091

[39]. Saleh, T. A.; Al-Saadi, A. A.; Gupta, V. K. Carbonaceous adsorbent prepared from waste tires: Experimental and computational evaluations of organic dye methyl orange. J. Mol. Liq. 2014, 191, 85-91.
https://doi.org/10.1016/j.molliq.2013.11.028

[40]. Islam, M. J.; Kumer, A.; Sarker, N.; Paul, S.; Zannat, A. The prediction and theoretical study for chemical reactivity, thermophysical and biological activity of morpholinium nitrate and nitrite ionic liquid crystals: A DFT study. Adv. J. Chem. A 2019, 2, 316-326.
https://doi.org/10.33945/SAMI/AJCA.2019.4.5

[41]. Coulibaly, W. K.; N'dri, J. S.; Koné, M. G.-R.; Dago, C. D.; Ambeu, C. N.; Bazureau, J.-P.; Ziao, N. Studies of the chemical reactivity of a series of rhodanine derivatives by approaches to quantum chemistry. Comput. Mol. Biosci. 2019, 09, 49-62.
https://doi.org/10.4236/cmb.2019.93005

[42]. Patil, M. K.; Kotresh, M. G.; Tilakraj, T. S.; Inamdar, S. R. Solvatochromism and ZINDO-IEFPCM solvation study on NHS ester activated AF514 and AF532 dyes: Evaluation of the dipole moments. Eur. J. Chem. 2022, 13, 8-19.
https://doi.org/10.5155/eurjchem.13.1.8-19.2123

[43]. Jabkhiro, H.; El Hassani, K.; Chems, M.; Anouar, A. Simultaneous removal of anionic dyes onto Mg(Al)O mixed metal oxides from ternary aqueous mixture: Derivative spectrophotometry and Density Functional Theory study. Colloids Interface Sci. Commun. 2021, 45, 100549.
https://doi.org/10.1016/j.colcom.2021.100549

[44]. Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the conceptual Density Functional Theory indices to organic chemistry reactivity. Molecules 2016, 21, 748.
https://doi.org/10.3390/molecules21060748

[45]. Umar, M.; Nnadiekwe, C. C.; Abdulazeez, I.; Alhooshani, K.; Al-Saadi, A. A. Nitrogen-enhanced charge transfer efficacy on the carbon sheet: A theoretical insight into the adsorption of anionic dyes. Arab. J. Sci. Eng. 2022, 47, 419-427.
https://doi.org/10.1007/s13369-021-05648-x

[46]. Wang, T.; Husein, D. Z. Novel synthesis of multicomponent porous nano-hybrid composite, theoretical investigation using DFT and dye adsorption applications: disposing of waste with waste. Environ. Sci. Pollut. Res. Int. 2022, 1-28 https://doi.org/10.1007/s11356-022-20050-2.
https://doi.org/10.1007/s11356-022-20050-2

[47]. Ara, K.; Sugiyama, K.-I.; Kitagawa, H.; Nagai, M.; Yoshioka, N. Study on chemical reactivity control of sodium by suspended nanoparticles I. J. Nucl. Sci. Technol. 2010, 47, 1165-1170.
https://doi.org/10.1080/18811248.2010.9720983

[48]. Demircioğlu, Z.; Kaştaş, G.; Kaştaş, Ç. A.; Frank, R. Spectroscopic, XRD, Hirshfeld surface and DFT approach (chemical activity, ECT, NBO, FFA, NLO, MEP, NPA& MPA) of (E)-4-bromo-2-[(4-bromophenylimino) methyl]-6-ethoxyphenol. J. Mol. Struct. 2019, 1191, 129-137.
https://doi.org/10.1016/j.molstruc.2019.03.060

[49]. Liu, C.; Li, Y.; Cheng, Q.; Zhao, Y. Atomic model of gold adsorption onto the pyrite surface with DFT study. Minerals (Basel) 2022, 12, 387.
https://doi.org/10.3390/min12030387

[50]. Wheeler, S. E.; Bloom, J. W. G. Toward a more complete understanding of noncovalent interactions involving aromatic rings. J. Phys. Chem. A 2014, 118, 6133-6147.
https://doi.org/10.1021/jp504415p

[51]. Ko, S.-J.; Yamaguchi, T.; Salles, F.; Oh, J.-M. Systematic utilization of layered double hydroxide nanosheets for effective removal of methyl orange from an aqueous system by π-π stacking-induced nanoconfinement. J. Environ. Manage. 2021, 277, 111455.
https://doi.org/10.1016/j.jenvman.2020.111455

[52]. Roldan, A.; de Leeuw, N. H. A density functional theory study of the hydrogenation and reduction of the thio-spinel Fe3S4{111} surface. Phys. Chem. Chem. Phys. 2019, 21, 2426-2433.
https://doi.org/10.1039/C8CP06371K


How to cite


Abdullah, E. Eur. J. Chem. 2022, 13(3), 337-350. doi:10.5155/eurjchem.13.3.337-350.2297
Abdullah, E. Electronic band structure of Bi5O7NO3 and its methyl orange removal mechanism. Eur. J. Chem. 2022, 13(3), 337-350. doi:10.5155/eurjchem.13.3.337-350.2297
Abdullah, E. (2022). Electronic band structure of Bi5O7NO3 and its methyl orange removal mechanism. European Journal of Chemistry, 13(3), 337-350. doi:10.5155/eurjchem.13.3.337-350.2297
Abdullah, Eshraq. "Electronic band structure of Bi5O7NO3 and its methyl orange removal mechanism." European Journal of Chemistry [Online], 13.3 (2022): 337-350. Web. 3 Dec. 2022
Abdullah, Eshraq. "Electronic band structure of Bi5O7NO3 and its methyl orange removal mechanism" European Journal of Chemistry [Online], Volume 13 Number 3 (30 September 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.13.3.337-350.2297


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2022, 13(3), 337-350 | doi: https://doi.org/10.5155/eurjchem.13.3.337-350.2297 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.