European Journal of Chemistry 2019, 10(1), 37-44. doi:10.5155/eurjchem.10.1.37-44.1814

Synthesis, crystal structure and in vitro anticancer studies of two bis(8-quinolinolato-N,O)-platinum(II) complexes


Hong Chen (1,*) orcid , Mingguo Liu (2) orcid

(1) Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
(2) Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
(*) Corresponding Author

Received: 06 Nov 2018, Accepted: 18 Dec 2018, Published: 31 Mar 2019

Abstract


Two bis(8-quinolinolato-N,O)-platinum(II) complexes, C18H12N2O2Pt (1) and C20H16N2O2Pt (2), were synthesized and characterized by FT-IR, elementary analysis and X-ray single crystal diffraction. Complex 1 crystallizes in monoclinic, space group P21/c with a = 9.3413(7), b = 10.3893(9), c = 14.8495(12) Å, β = 100.574(7)°, V = 1416.7(2) Å3. Complex 2 crystallizes in monoclinic, space group P21/n with a = 9.5115(11), b = 15.5692(18), c = 16.720(2) Å, β = 94.544(2)°, V = 2468.3(5) Å3. Intermolecular C-H···O hydrogen bonding interactions, as well as Pt···Pt and π-π stacking interactions, help to stabilize the crystal structures. The preliminary in vitro anticancer activity of complexes 1 and 2 and the corresponding ligands (L1 and L2) were investigated using human cervical (Hela) and hepatocellular carcinoma (Hep-G2) cancer cell lines. The platinum(II) complexes can greatly inhibit the cell proliferation and show stronger cytotoxic activities against the tested cancer cell lines than both ligands.


Keywords


DFT calculations; Crystal structure; Anticancer activity; 8-Hydroxyquinoline; Platinum(II) complexes; 8-Hydroxy-2-methylquinoline

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.10.1.37-44.1814

Article Metrics


This Abstract was viewed 75 times | PDF Article downloaded 37 times

References

[1]. Shi, X. C.; Chen, Z. Y.; Wang, Y. J.; Guo, Z. J.; Wang, X. Y. Dalton Trans. 2018, 47, 5049-5054.
https://doi.org/10.1039/C8DT00794B

[2]. Hannon, M. J. Chem. Soc. Rev. 2007, 36, 280-295.
https://doi.org/10.1039/B606046N

[3]. Dyson, P. J.; Sava, G. Dalton Trans. 2006, 1929-1933.
https://doi.org/10.1039/b601840h

[4]. Guo, Z. J.; Sadler, P. J. Adv. Inorg. Chem. 2000, 49, 183-306.
https://doi.org/10.1016/S0898-8838(08)60271-8

[5]. Zhang, S. R.; Yuan, H.; Guo, Y.; Wang, K.; Wang, X. Y.; Guo, Z. J. Chem. Commun. 2018, 54, 11717-11720.
https://doi.org/10.1039/C8CC06576D

[6]. Kelland, L. Nat. Rev. Cancer 2007, 7, 573-584.
https://doi.org/10.1038/nrc2167

[7]. Hannon M. J. Pure Appl. Chem. 2007, 79, 2243-2261.
https://doi.org/10.1351/pac200779122243

[8]. Fricker, S. P. Dalton Trans. 2007, 4903-4917.
https://doi.org/10.1039/b705551j

[9]. Reedijk, J. Chem. Commun. 1996, 801-813.

[10]. Florea, A. M.; Büsselberg, D. Cancers 2011, 3, 1351-1371.
https://doi.org/10.3390/cancers3011351

[11]. Wang, X. Y.; Guo, Z. J. Dalton Trans. 2008, 1521-1532.
https://doi.org/10.1039/B715903J

[12]. Roberts, J. D.; Peroutka, J.; Farrell, N. J. Inorg. Biochem. 1999, 77, 51-57.
https://doi.org/10.1016/S0162-0134(99)00147-6

[13]. Farrer, N. J.; Woods, J. A.; Salassa, L.; Zhao, Y.; Robinson, K. S.; Clarkson, G.; Mackay, F. S.; Sadler, P. J. Angew. Chem. Int. Ed. 2010, 49, 8905-8908.
https://doi.org/10.1002/anie.201003399

[14]. Miodragovic, D. U.; Quentzel, J. A.; Kurutz, J. W.; Stern, C. L.; Ahn, R. W.; Kandela, I.; Mazar, A.; O'Halloran, T. V. Angew. Chem. Int. Ed. 2013, 52, 10749-10752.
https://doi.org/10.1002/anie.201303251

[15]. Rosenberg, B.; VanCamp. L.; Trosko, J. E.; Mansour, V. H. Nature 1969, 222, 385-386.
https://doi.org/10.1038/222385a0

[16]. Reedijk, J. Eur. J. Inorg. Chem. 2009, 2009, 1303-1312.

[17]. Wheate, N. J.; Walker, S.; Craig, G. E.; Oun, R. Dalton Trans. 2010, 39, 8113-8127.
https://doi.org/10.1039/c0dt00292e

[18]. Wang, X. Y.; Guo, Z. J. Chem. Soc. Rev. 2013, 42, 202-224.
https://doi.org/10.1039/C2CS35259A

[19]. Zhu, Z. Z.; Wang, X. Y.; Li, T. J.; Aime, S.; Sadler, P. J.; Guo, Z. J. Angew. Chem. Int. Ed. 2014, 53, 13225-13228.
https://doi.org/10.1002/anie.201407406

[20]. Wang, J. Z.; Wang, X. Y.; Song, Y. J.; Wang, J.; Zhang, C. L.; Chang, C. J.; Yan, J.; Qiu, L.; Wu, M. M.; Guo, Z. J. Chem. Sci. 2013, 4, 2605-2612.
https://doi.org/10.1039/c3sc50554e

[21]. Varbanov, H. P.; Jakupec, M. A.; Roller, A.; Jensen, F.; Galanski, M.; Keppler, B. K. J. Med. Chem. 2013, 56, 330-344.
https://doi.org/10.1021/jm3016427

[22]. Pichler, V.; Heffeter, P.; Valiahdi, S. M.; Kowol, C. R.; Egger, A.; Berger, W.; Jakupec, M. A.; Galanski, M.; Keppler, B. K. J. Med. Chem. 2012, 55, 11052-11061.
https://doi.org/10.1021/jm301645g

[23]. Liu, Z. P.; He, W. J.; Guo, Z. J. Chem. Soc. Rev. 2013, 42, 1568-1600.
https://doi.org/10.1039/c2cs35363f

[24]. Tu, C.; Lin, J.; Shao, Y.; Guo, Z. J. Inorg.Chem. 2003, 42, 5795-5797.
https://doi.org/10.1021/ic034604q

[25]. Proetto, M.; Liu, W. K.; Hagenbach, A.; Abram, U.; Gust, R. Eur. J. Med. Chem. 2012, 53, 168-175.
https://doi.org/10.1016/j.ejmech.2012.03.053

[26]. Zhang, Q. Y.; Huang, N. Y.; Wang, J. Z.; Luo, H. J.; He, H. B.; Ding, M. R.; Deng, W. Q.; Zou, K. Fitoterapia 2013, 89, 210-217.
https://doi.org/10.1016/j.fitote.2013.05.021

[27]. Fang, H. B.; Jin, L.; Huang, N. Y.; Wang, J. Z.; Zou, K.; Luo, Z. G. Chin. J. Chem. 2013, 31, 831-836.
https://doi.org/10.1002/cjoc.201300119

[28]. Huang, N. Y.; Chen, L.; Liao, Z. J.; Fang, H. B.; Wang, J. Z.; Zou, K. Chin. J. Chem. 2012, 30, 71-76.
https://doi.org/10.1002/cjoc.201100051

[29]. Ballardini, R.; Varani, G.; Indelli, M. T.; Scandola, F. Inorg. Chem. 1986, 25, 3858-3865.
https://doi.org/10.1021/ic00242a006

[30]. Ballardinia, R.; Indelli, M. T.; Varani, G.; Bignozzi, C. A.; Scandola, F. Inorg. Chim. Acta 1978, 31, L423-L424.
https://doi.org/10.1016/S0020-1693(00)94946-6

[31]. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J, Howard, J. A. K. & Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726

[32]. Sheldrick, G. M. A short history of SHELX. Acta Cryst. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[33]. Shapira, A.; Davidson, I.; Avni, N.; Assaraf, Y. G.; Livney, Y. D. Eur. J. Pharm. Biopharm. 2012, 80, 298-305.
https://doi.org/10.1016/j.ejpb.2011.10.022

[34]. Etaiw, S. E. D. H.; Sultan, A. S.; El-Bendary, M. M. J. Organomet. Chem. 2011, 696, 1668-1676.
https://doi.org/10.1016/j.jorganchem.2011.02.003

[35]. Creaven, B. S.; Duff, B.; Egan, D. A.; Kavanagh, K.; Rosair, G.; Thangella, V. R.; Walsh, M. Inorg. Chim. Acta 2010, 363, 4048-4058.
https://doi.org/10.1016/j.ica.2010.08.009

[36]. Chan, M. H. E.; Crouse, K. A.; Tahir, M. I. M.; Rosli, R.; Umar-Tsafe, N.; Cowley, A. R. Polyhedron 2008, 27, 1141-1149.
https://doi.org/10.1016/j.poly.2007.11.035

[37]. Mosmann, T. J. Immunol. Methods 1983, 65, 55-63.
https://doi.org/10.1016/0022-1759(83)90303-4

[38]. Wu, H. L.; Yuan, J. K.; Pan, G. L.; Zhang, Y. H.; Wang, X. L.; Shi, F. R.; Fan, X. Y. J. Photoch. Photobio. B 2013, 122, 37-44.
https://doi.org/10.1016/j.jphotobiol.2013.03.004

[39]. Kaniskan, N.; Ogretir, C. J. Mol. Struct. 2002, 584, 45-52.
https://doi.org/10.1016/S0166-1280(02)00018-0

[40]. Cumming, G.; Fidler, F.; Vaux, D. L. J. Cell Biol. 2007, 177, 7-11.
https://doi.org/10.1083/jcb.200611141

[41]. West, B. T. Eval. Health Prof. 2009, 32, 207-228.
https://doi.org/10.1177/0163278709338554

[42]. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558-561.
https://doi.org/10.1103/PhysRevB.47.558

[43]. Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251-14269.
https://doi.org/10.1103/PhysRevB.49.14251

[44]. Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169-11186.
https://doi.org/10.1103/PhysRevB.54.11169

[45]. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865

[46]. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758-1775.
https://doi.org/10.1103/PhysRevB.59.1758

[47]. Dudarev, S. L.; Botton, G. A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A. P. Phys. Rev. B 1998, 57, 1505-1509.
https://doi.org/10.1103/PhysRevB.57.1505

[48]. Kato, M.; Ogawa, Y.; Kozakai, M.; Sugimoto, Y. Acta Crystallogr. C. 2002, 58, m147-m149.
https://doi.org/10.1107/S0108270102000045

[49]. Low, K. H.; Xu, Z. X.; Xiang, H. F.; Chui, S. S. Y.; Roy, V. A. L.; Che, C. M. Chem. Asian J. 2011, 6, 3223-3229.
https://doi.org/10.1002/asia.201100450

[50]. Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 3885-3896.
https://doi.org/10.1039/b003010o

[51]. Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc. Dalton Trans. II 1989, S1-S83.
https://doi.org/10.1039/dt98900000s1

[52]. Wong, E.; Giandomenico, C. M. Chem. Rev. 1999, 99, 2451-2466.
https://doi.org/10.1021/cr980420v

[53]. Jamieson, E. R.; Lippard, S. J. Chem. Rev. 1999, 99, 2467-2498.
https://doi.org/10.1021/cr980421n

[54]. Qin, Q. P.; Chen, Z. F.; Qin, J. L.; He, X. J.; Li, Y. L.; Liu, Y. C.; Huang, K. B.; Liang, H. Eur. J. Med. Chem., 2015, 92, 302-313.
https://doi.org/10.1016/j.ejmech.2014.12.052


How to cite


Chen, H.; Liu, M. Eur. J. Chem. 2019, 10(1), 37-44. doi:10.5155/eurjchem.10.1.37-44.1814
Chen, H.; Liu, M. Synthesis, crystal structure and in vitro anticancer studies of two bis(8-quinolinolato-N,O)-platinum(II) complexes. Eur. J. Chem. 2019, 10(1), 37-44. doi:10.5155/eurjchem.10.1.37-44.1814
Chen, H., & Liu, M. (2019). Synthesis, crystal structure and in vitro anticancer studies of two bis(8-quinolinolato-N,O)-platinum(II) complexes. European Journal of Chemistry, 10(1), 37-44. doi:10.5155/eurjchem.10.1.37-44.1814
Chen, Hong, & Mingguo Liu. "Synthesis, crystal structure and in vitro anticancer studies of two bis(8-quinolinolato-N,O)-platinum(II) complexes." European Journal of Chemistry [Online], 10.1 (2019): 37-44. Web. 23 May. 2019
Chen, Hong, AND Liu, Mingguo. "Synthesis, crystal structure and in vitro anticancer studies of two bis(8-quinolinolato-N,O)-platinum(II) complexes" European Journal of Chemistry [Online], Volume 10 Number 1 (31 March 2019)

DOI Link: https://doi.org/10.5155/eurjchem.10.1.37-44.1814

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.