European Journal of Chemistry

Synthesis, crystal structure and in vitro anticancer studies of two bis(8-quinolinolato-N,O)-platinum(II) complexes

Crossmark


Main Article Content

Hong Chen
Mingguo Liu

Abstract

Two bis(8-quinolinolato-N,O)-platinum(II) complexes, C18H12N2O2Pt (1) and C20H16N2O2Pt (2), were synthesized and characterized by FT-IR, elementary analysis and X-ray single crystal diffraction. Complex 1 crystallizes in monoclinic, space group P21/c with a = 9.3413(7), b = 10.3893(9), c = 14.8495(12) Å, β = 100.574(7)°, V = 1416.7(2) Å3. Complex 2 crystallizes in monoclinic, space group P21/n with a = 9.5115(11), b = 15.5692(18), c = 16.720(2) Å, β = 94.544(2)°, V = 2468.3(5) Å3. Intermolecular C-H···O hydrogen bonding interactions, as well as Pt···Pt and π-π stacking interactions, help to stabilize the crystal structures. The preliminary in vitro anticancer activity of complexes 1 and 2 and the corresponding ligands (L1 and L2) were investigated using human cervical (Hela) and hepatocellular carcinoma (Hep-G2) cancer cell lines. The platinum(II) complexes can greatly inhibit the cell proliferation and show stronger cytotoxic activities against the tested cancer cell lines than both ligands.


icon graph This Abstract was viewed 1526 times | icon graph Article PDF downloaded 592 times

How to Cite
(1)
Chen, H.; Liu, M. Synthesis, Crystal Structure and in Vitro Anticancer Studies of Two bis(8-Quinolinolato-N,O)-platinum(II) Complexes. Eur. J. Chem. 2019, 10, 37-44.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Shi, X. C.; Chen, Z. Y.; Wang, Y. J.; Guo, Z. J.; Wang, X. Y. Dalton Trans. 2018, 47, 5049-5054.
https://doi.org/10.1039/C8DT00794B

[2]. Hannon, M. J. Chem. Soc. Rev. 2007, 36, 280-295.
https://doi.org/10.1039/B606046N

[3]. Dyson, P. J.; Sava, G. Dalton Trans. 2006, 1929-1933.
https://doi.org/10.1039/b601840h

[4]. Guo, Z. J.; Sadler, P. J. Adv. Inorg. Chem. 2000, 49, 183-306.
https://doi.org/10.1016/S0898-8838(08)60271-8

[5]. Zhang, S. R.; Yuan, H.; Guo, Y.; Wang, K.; Wang, X. Y.; Guo, Z. J. Chem. Commun. 2018, 54, 11717-11720.
https://doi.org/10.1039/C8CC06576D

[6]. Kelland, L. Nat. Rev. Cancer 2007, 7, 573-584.
https://doi.org/10.1038/nrc2167

[7]. Hannon M. J. Pure Appl. Chem. 2007, 79, 2243-2261.
https://doi.org/10.1351/pac200779122243

[8]. Fricker, S. P. Dalton Trans. 2007, 4903-4917.
https://doi.org/10.1039/b705551j

[9]. Reedijk, J. Chem. Commun. 1996, 801-813.

[10]. Florea, A. M.; Büsselberg, D. Cancers 2011, 3, 1351-1371.
https://doi.org/10.3390/cancers3011351

[11]. Wang, X. Y.; Guo, Z. J. Dalton Trans. 2008, 1521-1532.
https://doi.org/10.1039/B715903J

[12]. Roberts, J. D.; Peroutka, J.; Farrell, N. J. Inorg. Biochem. 1999, 77, 51-57.
https://doi.org/10.1016/S0162-0134(99)00147-6

[13]. Farrer, N. J.; Woods, J. A.; Salassa, L.; Zhao, Y.; Robinson, K. S.; Clarkson, G.; Mackay, F. S.; Sadler, P. J. Angew. Chem. Int. Ed. 2010, 49, 8905-8908.
https://doi.org/10.1002/anie.201003399

[14]. Miodragovic, D. U.; Quentzel, J. A.; Kurutz, J. W.; Stern, C. L.; Ahn, R. W.; Kandela, I.; Mazar, A.; O'Halloran, T. V. Angew. Chem. Int. Ed. 2013, 52, 10749-10752.
https://doi.org/10.1002/anie.201303251

[15]. Rosenberg, B.; VanCamp. L.; Trosko, J. E.; Mansour, V. H. Nature 1969, 222, 385-386.
https://doi.org/10.1038/222385a0

[16]. Reedijk, J. Eur. J. Inorg. Chem. 2009, 2009, 1303-1312.

[17]. Wheate, N. J.; Walker, S.; Craig, G. E.; Oun, R. Dalton Trans. 2010, 39, 8113-8127.
https://doi.org/10.1039/c0dt00292e

[18]. Wang, X. Y.; Guo, Z. J. Chem. Soc. Rev. 2013, 42, 202-224.
https://doi.org/10.1039/C2CS35259A

[19]. Zhu, Z. Z.; Wang, X. Y.; Li, T. J.; Aime, S.; Sadler, P. J.; Guo, Z. J. Angew. Chem. Int. Ed. 2014, 53, 13225-13228.
https://doi.org/10.1002/anie.201407406

[20]. Wang, J. Z.; Wang, X. Y.; Song, Y. J.; Wang, J.; Zhang, C. L.; Chang, C. J.; Yan, J.; Qiu, L.; Wu, M. M.; Guo, Z. J. Chem. Sci. 2013, 4, 2605-2612.
https://doi.org/10.1039/c3sc50554e

[21]. Varbanov, H. P.; Jakupec, M. A.; Roller, A.; Jensen, F.; Galanski, M.; Keppler, B. K. J. Med. Chem. 2013, 56, 330-344.
https://doi.org/10.1021/jm3016427

[22]. Pichler, V.; Heffeter, P.; Valiahdi, S. M.; Kowol, C. R.; Egger, A.; Berger, W.; Jakupec, M. A.; Galanski, M.; Keppler, B. K. J. Med. Chem. 2012, 55, 11052-11061.
https://doi.org/10.1021/jm301645g

[23]. Liu, Z. P.; He, W. J.; Guo, Z. J. Chem. Soc. Rev. 2013, 42, 1568-1600.
https://doi.org/10.1039/c2cs35363f

[24]. Tu, C.; Lin, J.; Shao, Y.; Guo, Z. J. Inorg.Chem. 2003, 42, 5795-5797.
https://doi.org/10.1021/ic034604q

[25]. Proetto, M.; Liu, W. K.; Hagenbach, A.; Abram, U.; Gust, R. Eur. J. Med. Chem. 2012, 53, 168-175.
https://doi.org/10.1016/j.ejmech.2012.03.053

[26]. Zhang, Q. Y.; Huang, N. Y.; Wang, J. Z.; Luo, H. J.; He, H. B.; Ding, M. R.; Deng, W. Q.; Zou, K. Fitoterapia 2013, 89, 210-217.
https://doi.org/10.1016/j.fitote.2013.05.021

[27]. Fang, H. B.; Jin, L.; Huang, N. Y.; Wang, J. Z.; Zou, K.; Luo, Z. G. Chin. J. Chem. 2013, 31, 831-836.
https://doi.org/10.1002/cjoc.201300119

[28]. Huang, N. Y.; Chen, L.; Liao, Z. J.; Fang, H. B.; Wang, J. Z.; Zou, K. Chin. J. Chem. 2012, 30, 71-76.
https://doi.org/10.1002/cjoc.201100051

[29]. Ballardini, R.; Varani, G.; Indelli, M. T.; Scandola, F. Inorg. Chem. 1986, 25, 3858-3865.
https://doi.org/10.1021/ic00242a006

[30]. Ballardinia, R.; Indelli, M. T.; Varani, G.; Bignozzi, C. A.; Scandola, F. Inorg. Chim. Acta 1978, 31, L423-L424.
https://doi.org/10.1016/S0020-1693(00)94946-6

[31]. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J, Howard, J. A. K. & Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726

[32]. Sheldrick, G. M. A short history of SHELX. Acta Cryst. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[33]. Shapira, A.; Davidson, I.; Avni, N.; Assaraf, Y. G.; Livney, Y. D. Eur. J. Pharm. Biopharm. 2012, 80, 298-305.
https://doi.org/10.1016/j.ejpb.2011.10.022

[34]. Etaiw, S. E. D. H.; Sultan, A. S.; El-Bendary, M. M. J. Organomet. Chem. 2011, 696, 1668-1676.
https://doi.org/10.1016/j.jorganchem.2011.02.003

[35]. Creaven, B. S.; Duff, B.; Egan, D. A.; Kavanagh, K.; Rosair, G.; Thangella, V. R.; Walsh, M. Inorg. Chim. Acta 2010, 363, 4048-4058.
https://doi.org/10.1016/j.ica.2010.08.009

[36]. Chan, M. H. E.; Crouse, K. A.; Tahir, M. I. M.; Rosli, R.; Umar-Tsafe, N.; Cowley, A. R. Polyhedron 2008, 27, 1141-1149.
https://doi.org/10.1016/j.poly.2007.11.035

[37]. Mosmann, T. J. Immunol. Methods 1983, 65, 55-63.
https://doi.org/10.1016/0022-1759(83)90303-4

[38]. Wu, H. L.; Yuan, J. K.; Pan, G. L.; Zhang, Y. H.; Wang, X. L.; Shi, F. R.; Fan, X. Y. J. Photoch. Photobio. B 2013, 122, 37-44.
https://doi.org/10.1016/j.jphotobiol.2013.03.004

[39]. Kaniskan, N.; Ogretir, C. J. Mol. Struct. 2002, 584, 45-52.
https://doi.org/10.1016/S0166-1280(02)00018-0

[40]. Cumming, G.; Fidler, F.; Vaux, D. L. J. Cell Biol. 2007, 177, 7-11.
https://doi.org/10.1083/jcb.200611141

[41]. West, B. T. Eval. Health Prof. 2009, 32, 207-228.
https://doi.org/10.1177/0163278709338554

[42]. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558-561.
https://doi.org/10.1103/PhysRevB.47.558

[43]. Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251-14269.
https://doi.org/10.1103/PhysRevB.49.14251

[44]. Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169-11186.
https://doi.org/10.1103/PhysRevB.54.11169

[45]. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865

[46]. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758-1775.
https://doi.org/10.1103/PhysRevB.59.1758

[47]. Dudarev, S. L.; Botton, G. A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A. P. Phys. Rev. B 1998, 57, 1505-1509.
https://doi.org/10.1103/PhysRevB.57.1505

[48]. Kato, M.; Ogawa, Y.; Kozakai, M.; Sugimoto, Y. Acta Crystallogr. C. 2002, 58, m147-m149.
https://doi.org/10.1107/S0108270102000045

[49]. Low, K. H.; Xu, Z. X.; Xiang, H. F.; Chui, S. S. Y.; Roy, V. A. L.; Che, C. M. Chem. Asian J. 2011, 6, 3223-3229.
https://doi.org/10.1002/asia.201100450

[50]. Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 3885-3896.
https://doi.org/10.1039/b003010o

[51]. Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc. Dalton Trans. II 1989, S1-S83.
https://doi.org/10.1039/dt98900000s1

[52]. Wong, E.; Giandomenico, C. M. Chem. Rev. 1999, 99, 2451-2466.
https://doi.org/10.1021/cr980420v

[53]. Jamieson, E. R.; Lippard, S. J. Chem. Rev. 1999, 99, 2467-2498.
https://doi.org/10.1021/cr980421n

[54]. Qin, Q. P.; Chen, Z. F.; Qin, J. L.; He, X. J.; Li, Y. L.; Liu, Y. C.; Huang, K. B.; Liang, H. Eur. J. Med. Chem., 2015, 92, 302-313.
https://doi.org/10.1016/j.ejmech.2014.12.052

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).