European Journal of Chemistry 2019, 10(1), 1-6. doi:10.5155/eurjchem.10.1.1-6.1826

Benzoin condensation of aromatic aldehydes catalyzed by N-heterocyclic carbenes under mild conditions


Isabel Monreal-Leyva (1) orcid , Breanna Rose Attema (2,*) orcid , Nuri Bae (3) , Haishi Cao (4) orcid , Hector Palencia (5) orcid

(1) Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 68849, USA
(2) Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 68849, USA
(3) Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 68849, USA
(4) Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 68849, USA
(5) Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 68849, USA
(*) Corresponding Author

Received: 13 Dec 2018, Accepted: 08 Jan 2019, Published: 31 Mar 2019

Abstract


The benzoin condensation was used to evaluate the catalytic activity of different N-heterocyclic carbenes as a function of their structure and N-substituents. There is a correlation between the length of an N-alkyl substituent and its performance as an organocatalyst. Heteroaromatic aldehydes were found to be the most reactive, among the screened substrates, finishing the reaction in 30 minutes, with almost quantitative yields. On the other hand, p-nitrobenzaldehyde, a strongly electrophilic aldehyde, was the least reactive. Electronic effects have little influence on the reaction yield but steric effects can dramatically reduce it. The preformed organocatalyst reacts faster than the generated in situ, with minimum solvent.


Keywords


Aldehydes; Heterocycles; Organocatalysis; Room temperature; Benzoin condensation; N-heterocyclic carbenes

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.10.1.1-6.1826

Article Metrics


This Abstract was viewed 127 times | PDF Article downloaded 50 times

References

[1]. Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307-9387.
https://doi.org/10.1021/acs.chemrev.5b00060

[2]. Feroci, M.; Chiarotto, I.; Orsini, M.; Pelagalli, R.; Inesi, A. Chem. Commun. 2012, 48, 5361-5363.
https://doi.org/10.1039/c2cc30371j

[3]. Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511-3522.
https://doi.org/10.1039/c2cs15333e

[4]. Marion, N.; Diez-Gonzalez, S.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2988-3000.
https://doi.org/10.1002/anie.200603380

[5]. Fu, Z.; Xu, J.; Zhu, T.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 835-839.
https://doi.org/10.1038/nchem.1710

[6]. Biju, A. T.; Kuhl, N.; Glorius, F. Accounts Chem. Res. 2011, 44, 1182-1195.
https://doi.org/10.1021/ar2000716

[7]. Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606-5655.
https://doi.org/10.1021/cr068372z

[8]. Yetra, S. R.; Bhunia, A.; Patra, A.; Mane, M. V.; Vanka, K.; Biju, A. T. Adv. Synth. Catal. 2013, 355, 1089-1097.
https://doi.org/10.1002/adsc.201300219

[9]. Chauhan, P.; Enders, D. Angew. Chem. Int. Ed. 2014, 53, 1485-1487.
https://doi.org/10.1002/anie.201309952

[10]. Dell'Amico, L.; Rassu, G.; Zambrano, V.; Sartori, A.; Curti, C.; Battistini, L.; Pelosi, G.; Casiraghi, G.; Zanardi, F. J. Am. Chem. Soc. 2014, 136, 11107-11114.
https://doi.org/10.1021/ja5054576

[11]. Zhu, T.; Mou, C.; Li, B.; Smetankova, M.; Song, B. -A.; Chi, Y. R. J. Am. Chem. Soc. 2015, 137, 5658-5661.
https://doi.org/10.1021/jacs.5b02219

[12]. Herzberger, J.; Niederer, K.; Pohlit, H.; Seiwert, J.; Worm, M.; Wurm, F. R.; Frey, H. Chem. Rev. 2016, 116, 2170-2243.
https://doi.org/10.1021/acs.chemrev.5b00441

[13]. Coulembier, O.; Degee, P.; Hedrick, J. L.; Dubois, P. Prog. Polym. Sci. 2006, 31, 723-747.
https://doi.org/10.1016/j.progpolymsci.2006.08.004

[14]. Nyce, G. W.; Glauser, T.; Connor, E. F.; Moeck, A.; Waymouth, R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2003, 125, 3046-3056.
https://doi.org/10.1021/ja021084+

[15]. Connor, E. F.; Nyce, G. W.; Myers, M.; Moeck, A.; Hedrick, J. L. J. Am. Chem. Soc. 2002, 124, 914-915.
https://doi.org/10.1021/ja0173324

[16]. He, M.; Struble Justin, R.; Bode Jeffrey, W. J. Am. Chem. Soc. 2006, 128, 8418-8420.
https://doi.org/10.1021/ja062707c

[17]. Cheng, J.; Huang, Z.; Chi, Y. R. Angew. Chem. Int. Ed. 2013, 52, 8592-8596.
https://doi.org/10.1002/anie.201303247

[18]. Lee, A.; Younai, A.; Price, C. K.; Izquierdo, J.; Mishra, R. K.; Scheidt, K. A. J. Am. Chem. Soc. 2014, 136, 10589-10592.
https://doi.org/10.1021/ja505880r

[19]. Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906-4917.
https://doi.org/10.1039/c3cs35522e

[20]. Ugai, T.; Tanaka, S.; Dokawa, S. Yakugaku Zasshi 1943, 64, 296-300.

[21]. Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719-3726.
https://doi.org/10.1021/ja01547a064

[22]. Marion, N.; Diez-Gonzalez, S.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2988-3000.
https://doi.org/10.1002/anie.200603380

[23]. Johnson, J. S. Angew. Chem., Int. Ed. 2004, 43, 1326-1328.
https://doi.org/10.1002/anie.200301702

[24]. Hayat, F.; Kang, L.; Lee, C. Y.; Shin, D. Tetrahedron 2015, 71, 2945-2950.
https://doi.org/10.1016/j.tet.2015.03.023

[25]. Malik, N.; Zhang, Z.; Erhardt, P. J. Nat. Prod. 2015, 78, 2940-2947.
https://doi.org/10.1021/acs.jnatprod.5b00607

[26]. Siddiqui, S. A.; Narkhede, U. C.; Palimkar, S. S.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. Tetrahedron 2005, 61, 3539-3546.
https://doi.org/10.1016/j.tet.2005.01.116

[27]. Shimakawa, Y.; Morikawa, T.; Sakaguchi, S. Tetrahedron Lett. 2010, 51, 1786-1789.
https://doi.org/10.1016/j.tetlet.2010.01.103

[28]. Joo, C.; Kang, S.; Kim, S. M.; Han, H.; Yang, J. W. Tetrahedron Lett. 2010, 51, 6006-6007.
https://doi.org/10.1016/j.tetlet.2010.09.028

[29]. Mirjalili, B. B. F.; Bamoniri, A.; Akbari, A. Chem. Heterocycl. Comp. 2011, 47, 487-491.
https://doi.org/10.1007/s10593-011-0785-1

[30]. Kadam, H. K.; Khan, S.; Kunkalkar, R. A.; Tilve, S. G. Tetrahedron Lett. 2013, 54, 1003-1007.
https://doi.org/10.1016/j.tetlet.2012.12.041

[31]. Li, J. J.; Norton, M. B.; Reinhard, E. J.; Anderson, G. D.; Gregory, S. A.; Isakson, P. C.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Seibert, K.; Zhang, Y.; Zweifel, B. S.; Reitz, D. B. J. Med. Chem. 1996, 39, 1846-1856.
https://doi.org/10.1021/jm950878e

[32]. Singh, D. P.; Kumar, R.; Singh, J. Eur. J. Med. Chem. 2009, 44, 1731-1736.
https://doi.org/10.1016/j.ejmech.2008.03.007

[33]. Muccioli, G. G.; Martin, D.; Scriba, G. K. E.; Poppitz, W.; Poupaert, J. H.; Wouters, J.; Lambert, D. M. J. Med. Chem. 2005, 48, 2509-2517.
https://doi.org/10.1021/jm049263k

[34]. Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534-541.
https://doi.org/10.1021/ar030050j

[35]. Fevre, M.; Pinaud, J.; Gnanou, Y.; Vignolle, J.; Taton, D. Chem. Soc. Rev. 2013, 42, 2142-2172.
https://doi.org/10.1039/c2cs35383k

[36]. Iwamoto, K. -I.; Hamaya, M.; Hashimoto, N.; Kimura, H.; Suzuki, Y.; Sato, M. Tetrahedron Lett. 2006, 47, 7175-7177.
https://doi.org/10.1016/j.tetlet.2006.07.153

[37]. Hervert, B.; McCarthy, P. D.; Palencia, H. Tetrahedron Lett. 2014, 55, 133-136.
https://doi.org/10.1016/j.tetlet.2013.10.135

[38]. Broekemier, N. W.; Broekemier, N. C.; Short, R. T.; Palencia, H. Eur. J. Chem. 2014, 5(1), 162-166.
https://doi.org/10.5155/eurjchem.5.1.162-166.940

[39]. Liu, J.; Chen, J.; Zhao, J.; Zhao, Y.; Li, L.; Zhang, H. Synthesis-Stuttgart 2003, 2661-2666.

[40]. Delaude, L.; Szypa, M.; Demonceau, A.; Noels, A. F. Adv. Synth. Catal. 2002, 344 (6-7), 749-756.
https://doi.org/10.1002/1615-4169(200208)344:6/7<749::AID-ADSC749>3.0.CO;2-T

[41]. Amyes, T. L.; Diver, S. T.; Richard, J. P.; Rivas, F. M.; Toth, K., J. Am. Chem. Soc. 2004, 126 (13), 4366-4374.
https://doi.org/10.1021/ja039890j

[42]. Cai, G.; Feng, J.; Zhu, J.; Wilkie, C. A. Polym. Degrad. Stabil. 2014, 99, 204-210.
https://doi.org/10.1016/j.polymdegradstab.2013.11.004

[43]. Vora, H. U.; Lathrop, S. P.; Reynolds, N. T.; Kerr, M. S.; Read de Alaniz, J.; Rovis, T.; Chennamadhavuni, S.; Davies, H. M. L. Org. Synth. 2010, 87, 350-361.
https://doi.org/10.15227/orgsyn.087.0350

[44]. Rehbein, J.; Ruser, S. M.; Phan, J. Chem. Sci. 2015, 6(10), 6013-6018.
https://doi.org/10.1039/C5SC02186C

[45]. De Luca, L.; Mezzetti, A. Angew. Chem. Int. Ed. 2017, 56 (39), 11949-11953.
https://doi.org/10.1002/anie.201706261

[46]. Arifin, K.; Minggu, L. J.; Daud, W. R. W.; Yamin, B. M.; Daik, R.; Kassim, M. B. Spectrochim. Acta A 2014, 120, 208-215.
https://doi.org/10.1016/j.saa.2013.09.069

[47]. Myles, L.; Gathergood, N.; Connon, S. J. Chem. Commun. 2013, 49 (46), 5316-5318.
https://doi.org/10.1039/c3cc41588k

[48]. Iwamoto, K. -i.; Kimura, H.; Oike, M.; Sato, M. Org. Biomol. Chem. 2008, 6 (5), 912-915.
https://doi.org/10.1039/b719430g

[49]. Plummer, C. W.; Finke, P. E.; Mills, S. G.; Wang, J.; Tong, X.; Doss, G. A.; Fong, T. M.; Lao, J. Z.; Schaeffer, M. -T.; Chen, J.; Shen, C. P.; Stribling, D. S.; Shearman, L. P.; Strack, A. M.; Van der Ploeg, L. H. T. Bioorg. Med. Chem. Lett. 2005, 15(5), 1441-1446.
https://doi.org/10.1016/j.bmcl.2004.12.078

[50]. Procuranti, B.; Connon, S. J. Chem. Commun. 2007, 14, 1421-1423.
https://doi.org/10.1039/b618792g

[51]. Collett, C. J.; Massey, R. S.; Maguire, O. R.; Batsanov, A. S.; O'Donoghue, A. C.; Smith, A. D. Chem. Sci. 2013, 4, 1514-1522.
https://doi.org/10.1039/c2sc22137c

[52]. Haghshenas, P.; Gravel, M. Org. Lett. 2016, 18, 4518-4521.
https://doi.org/10.1021/acs.orglett.6b02123


How to cite


Monreal-Leyva, I.; Attema, B.; Bae, N.; Cao, H.; Palencia, H. Eur. J. Chem. 2019, 10(1), 1-6. doi:10.5155/eurjchem.10.1.1-6.1826
Monreal-Leyva, I.; Attema, B.; Bae, N.; Cao, H.; Palencia, H. Benzoin condensation of aromatic aldehydes catalyzed by N-heterocyclic carbenes under mild conditions. Eur. J. Chem. 2019, 10(1), 1-6. doi:10.5155/eurjchem.10.1.1-6.1826
Monreal-Leyva, I., Attema, B., Bae, N., Cao, H., & Palencia, H. (2019). Benzoin condensation of aromatic aldehydes catalyzed by N-heterocyclic carbenes under mild conditions. European Journal of Chemistry, 10(1), 1-6. doi:10.5155/eurjchem.10.1.1-6.1826
Monreal-Leyva, Isabel, Breanna Rose Attema, Nuri Bae, Haishi Cao, & Hector Palencia. "Benzoin condensation of aromatic aldehydes catalyzed by N-heterocyclic carbenes under mild conditions." European Journal of Chemistry [Online], 10.1 (2019): 1-6. Web. 23 May. 2019
Monreal-Leyva, Isabel, Attema, Breanna, Bae, Nuri, Cao, Haishi, AND Palencia, Hector. "Benzoin condensation of aromatic aldehydes catalyzed by N-heterocyclic carbenes under mild conditions" European Journal of Chemistry [Online], Volume 10 Number 1 (31 March 2019)

DOI Link: https://doi.org/10.5155/eurjchem.10.1.1-6.1826

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.