European Journal of Chemistry 2019, 10(3), 256-262 | doi: https://doi.org/10.5155/eurjchem.10.3.256-262.1906 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Synthesis, characterization and crystal structure of a novel tetranuclear Co(II) cubane cluster


Hong Chen (1,*) orcid , Jianchun Wu (2) orcid , Mingguo Liu (3) orcid

(1) Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
(2) Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
(3) Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
(*) Corresponding Author

Received: 14 Jun 2019 | Revised: 07 Jul 2019 | Accepted: 12 Jul 2019 | Published: 30 Sep 2019 | Issue Date: September 2019

Abstract


A new tetranuclear Co(II) cubane cluster 1, [Co4(L1)4(L2)4]·4CH3CH2OH (HL1 = 2-Methylquinolin-8-ol, HL2 = t-Bu-COOH), has been synthesized and characterized by X-ray single crystal diffraction, FT-IR, TG/DSC, and elementary analysis. The data reveals that it has a very interesting structural motif consisting of a [Co4O4] core in the form of a cube with the Co and O occupying opposite corners. In the crystal structure of complex 1, the molecules are linked by intramolecular CH···O hydrogen bonding interactions and Van der Waals forces, forming a three-dimensional network structure. Crystal data for complex 1: C60H68Co4N4O12, triclinic, space group P-1 (no. 2), with a = 12.0644(4), b = 12.0996(3), c = 20.2858(7) Å, α = 92.005(3)o, β = 92.182(3)°, γ = 97.943(3)°, Z = 2, V = 2928.25(16) Å3, T = 293 K, μ(Mo) = 1.178 mm-1, Dcalc = 1.444 g/cm3, 16737 reflections measured (3.00° ≤ θ ≤ 28.53°), 9010 unique (Rint = 0.024, Rsigma = 0.0574) which were used in all calculations. The final R1 was 0.039 (I≥2σ(I)) and wR2 was 0.090 (all data).


Keywords


Crystal structure; DFT calculations; 2-Methylquinolin-8-ol; Transition-metal clusters; Tetranuclear Co(II) cubane; Hydrogen bonding interactions

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.10.3.256-262.1906

Links for Article


| | | | | | |

| | | | | | |

Related Articles




Article Metrics

This Abstract was viewed 526 times | PDF Article downloaded 142 times

Funding information


The Analytical & Testing Center of China Three Gorges University, Yichang, China and The Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China.

References

[1]. Fujita, D.; Ueda, Y.; Sato, S.; Mizuno, N.; Kumasaka, T.; Fujita, M. Nature 2016, 540, 563-566.
https://doi.org/10.1038/nature20771

[2]. Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Chem. Rev. 2015, 115, 3012-3035.
https://doi.org/10.1021/cr4001226

[3]. McConnell, A. J.; Wood, C. S.; Neelakandan, P. P.; Nitschke, J. R. Chem. Rev. 2015, 115, 7729-7793.
https://doi.org/10.1021/cr500632f

[4]. Saha, M. L.; Yan, X.; Stang, P. J. Acc. Chem. Res. 2016, 49, 2527-2539.
https://doi.org/10.1021/acs.accounts.6b00416

[5]. Ballester, P.; Fujita, M.; Rebek, Jr. J. Chem. Soc. Rev. 2015, 44, 392-393.
https://doi.org/10.1039/C4CS90101K

[6]. Cook, T. R.; Stang, P. J. Chem. Rev. 2015, 115, 7001-7045.
https://doi.org/10.1021/cr5005666

[7]. Smulders, M. M. J.; Riddell, I. A.; Browne, C.; Nitschke, J. R. Chem. Soc. Rev. 2013, 42, 1728-1754.
https://doi.org/10.1039/C2CS35254K

[8]. Han, M.; Engelhard, D. M.; Clever, G. H. Chem. Soc. Rev. 2014, 43, 1848-1860.
https://doi.org/10.1039/C3CS60473J

[9]. Saalfrank, R. W.; Maid, H.; Scheurer, A. Angew. Chem. Int. Ed. 2008, 47, 8794-8824.
https://doi.org/10.1002/anie.200702075

[10]. Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem. Int. Ed. 2009, 48, 3418-3438.
https://doi.org/10.1002/anie.200805340

[11]. Breiner, B.; Clegg, J. K.; Nitschke, J. R. Chem. Sci. 2011, 2, 51-56.
https://doi.org/10.1039/C0SC00329H

[12]. Galan, A.; Ballester, P. Chem. Soc. Rev. 2016, 45, 1720-1737.
https://doi.org/10.1039/C5CS00861A

[13]. Koblenz, T. S.; Wassenaar, J.; Reek J. N. H. Chem. Soc. Rev. 2008, 37, 247-262.
https://doi.org/10.1039/B614961H

[14]. Georgieva, I.; Trendafilova, N.; Dodoff, N.; Kovacheva. D. Spectrochim. Acta A 2017, 176, 58-66.
https://doi.org/10.1016/j.saa.2017.01.008

[15]. Song, J.; Duan, B. F.; Lu, J. F.; Wu, R.; Du. Q. C. J. Mol. Struct. 2019, 1195, 252-258.
https://doi.org/10.1016/j.molstruc.2019.05.030

[16]. Akhtar, M.; Alharthi, A. I.; Alotaibi, M. A.; Trendafilova, N. Polyhedron 2017, 122, 105-115.
https://doi.org/10.1016/j.poly.2016.11.017

[17]. Chen, H.; Liu, M. G. J. Mol. Struct. 2019, 1180, 31-40.

[18]. Jeon, I. R.; Clérac, R. Dalton Trans. 2012, 41, 9565-9686.
https://doi.org/10.1039/c2dt30906h

[19]. Sato, Y.; Ohkoshi, S.; Arai, K.; Tozawa, M.; Hashimoto, K. J. Am. Chem. Soc. 2003, 125, 14590-14595.
https://doi.org/10.1021/ja030375v

[20]. Liu, C. M.; Zhang, D. Q.; Zhu, D. B. Chem. Commun. 2008, 368-370.
https://doi.org/10.1039/B715080F

[21]. Hao, Z. M.; Zhang, X. M. Dalton Trans. 2011, 40, 2092-2098.
https://doi.org/10.1039/c0dt00979b

[22]. Das, A.; Klinke, F. J.; Demeshko, S.; Meyer, S.; Dechert, S.; Meyer, F. Inorg. Chem. 2012, 51, 8141-8149.
https://doi.org/10.1021/ic300535d

[23]. Murrie, M.; Teat, S. J.; Stoeckli-Evans, H.; Gudel, H. U. Angew. Chem., Int. Ed. 2003, 42, 4653-4656.
https://doi.org/10.1002/anie.200351753

[24]. Song, Y. M.; Luo, F.; Luo, M. B.; Liao, Z. W.; Sun, G. M.; Tian, X. Z.; Zhu, Y.; Yuan, Z. J.; Liu, S. J.; Xu, W. Y.; Feng, X. F. Chem. Commun. 2012, 48, 1006-1008.
https://doi.org/10.1039/C2CC17080A

[25]. Zeng, M. H.; Yin, Z.; Liu, Z. H.; Xu, H. B.; Feng, Y. C.; Hu, Y. Q.; Chang, L. X.; Zhang, Y. X.; Huang, J.; Kurmoo, M. Angew. Chem., Int. Ed. 2016, 55, 11407-11411.
https://doi.org/10.1002/anie.201604813

[26]. Shi, X. C.; Chen, Z. Y.; Wang, Y. J.; Guo, Z. J.; Wang, X. Y. Dalton Trans. 2018, 47, 5049-5054.
https://doi.org/10.1039/C8DT00794B

[27]. Hannon, M. J. Chem. Soc. Rev. 2007, 36, 280-295.
https://doi.org/10.1039/B606046N

[28]. Hannon, M. J. Pure Appl. Chem. 2007, 79, 2243-2261.
https://doi.org/10.1351/pac200779122243

[29]. Passard, G.; Ullman, A. M.; Brodsky, C. N.; Nocera, D. G. J. Am. Chem. Soc. 2016, 138, 2925-2928.
https://doi.org/10.1021/jacs.5b12828

[30]. Becker, H. G. O.; Berger, W.; Domschke, G.; Fanghanel, E.; Faust, J.; Fischer, M.; Gentz, F.; Gewald, K.; Gluch, R.; Mayer, R.; Müller, K.; Pavel, D.; Schmidt, H.; Schollberg, K.; Schwetlick, K.; Seiler, E.; Zeppenfeld, G. Organikum, 19th ed.; Johann Ambrosius Barth Verlag GmbH: Leipzig, Berlin, Heidelberg, 1993.

[31]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726

[32]. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[33]. K. Brandenburg, DIAMOND Version 3.0, Crystal Impact GbR, Bonn, Germany, 2014.

[34]. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558-561.
https://doi.org/10.1103/PhysRevB.47.558

[35]. Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251-14269.
https://doi.org/10.1103/PhysRevB.49.14251

[36]. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169-11186.
https://doi.org/10.1103/PhysRevB.54.11169

[37]. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865

[38]. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758-1775.
https://doi.org/10.1103/PhysRevB.59.1758

[39]. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Phys. Rev. B 1998, 57, 1505-1509.
https://doi.org/10.1103/PhysRevB.57.1505

[40]. Klinke, F. J.; Das, A.; Demeshko, S.; Dechert, S.; Meyer, F. Inorg. Chem. 2014, 53, 2976-2982.
https://doi.org/10.1021/ic4027656

[41]. Ma, X. F.; Wang, Z.; Chen, X. L.; Kurmoo, M.; Zeng, M. H. Inorg. Chem. 2017, 56, 15178-15186.
https://doi.org/10.1021/acs.inorgchem.7b02530

[42]. Chen, X. L.; Xu, H. B.; Shi, X. X.; Zhang, Y. X.; Yang, T.; Kurmoo, M.; Zeng, M. H. Inorg. Chem. 2017, 56, 14069-14076.
https://doi.org/10.1021/acs.inorgchem.7b02210

Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Chen, H.; Wu, J.; Liu, M. Eur. J. Chem. 2019, 10(3), 256-262. doi:10.5155/eurjchem.10.3.256-262.1906
Chen, H.; Wu, J.; Liu, M. Synthesis, characterization and crystal structure of a novel tetranuclear Co(II) cubane cluster. Eur. J. Chem. 2019, 10(3), 256-262. doi:10.5155/eurjchem.10.3.256-262.1906
Chen, H., Wu, J., & Liu, M. (2019). Synthesis, characterization and crystal structure of a novel tetranuclear Co(II) cubane cluster. European Journal of Chemistry, 10(3), 256-262. doi:10.5155/eurjchem.10.3.256-262.1906
Chen, Hong, Jianchun Wu, & Mingguo Liu. "Synthesis, characterization and crystal structure of a novel tetranuclear Co(II) cubane cluster." European Journal of Chemistry [Online], 10.3 (2019): 256-262. Web. 25 Oct. 2020
Chen, Hong, Wu, Jianchun, AND Liu, Mingguo. "Synthesis, characterization and crystal structure of a novel tetranuclear Co(II) cubane cluster" European Journal of Chemistry [Online], Volume 10 Number 3 (30 September 2019)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item


DOI Link: https://doi.org/10.5155/eurjchem.10.3.256-262.1906

| | | | | | |

| | | | | |

Save to Zotero Save to Mendeley



European Journal of Chemistry 2019, 10(3), 256-262 | doi: https://doi.org/10.5155/eurjchem.10.3.256-262.1906 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.