European Journal of Chemistry

A dimeric oxidovanadium(V) complex derived from a hydrazonate ligand with an unusual asymmetrically bridged μ-(oxido)μ-(H2O){oxidovanadium(V)}2 core

Crossmark


Main Article Content

Alice Prudente Borges
Claudia Cristina Gatto
Victor Marcelo Deflon
Pedro Ivo da Silva Maia

Abstract

The binuclear oxidovanadium(V) complex [{VO(L)}2(μ-O)(μ-H2O)]∙2CH3CN (1), where L2– is the dianion of the Schiff base 2-salicylaldehyde-2-hydroxybenzoylhydrazone, were prepared and characterized by elemental analysis, FTIR, 1H, 13C and 51V NMR. Furthermore, the crystal structure of the compound 1 was determined by single crystal X-ray diffractometry revealing a distorted octahedral O5N-coordination geometry around the V(V) acceptor centers. The vanadium ions are connected by the μ-O2– and the μ-H2O asymmetric bridges located in the edge between the two octahedrons which keeps a distance of 3.194 Å between the two vanadium centers. Crystal data for C32H28N6O10V2 (=758.48 g/mol): orthorhombic, space group P212121 (no. 19), a = 12.9655(8) Å, b = 14.1902(9) Å, c = 18.4379(10) Å, = 3392.3(4) Å3, Z = 4, T = 293(2) K, μ(MoKα) = 0.616 mm-1, Dcalc = 1.485 g/cm3, 18803 reflections measured (3.622° ≤ 2Θ ≤ 56.704°), 8263 unique (Rint = 0.0473, Rsigma = 0.1020) which were used in all calculations. The final R1 was 0.0509 (I > 2σ(I)) and wR2 was 0.1531 (all data). The (VO)2(μ-O)(μ-H2O) core in compound 1 represents a rare case and few examples of similar type have been structurally characterized.


icon graph This Abstract was viewed 2208 times | icon graph Article PDF downloaded 570 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Borges, A. P.; Gatto, C. C.; Deflon, V. M.; Maia, P. I. da S. A Dimeric oxidovanadium(V) Complex Derived from a Hydrazonate Ligand With an Unusual Asymmetrically Bridged μ-(oxido)μ-(H2O){oxidovanadium(V)}2 Core. Eur. J. Chem. 2020, 11, 1-5.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Belokon, Y. N.; Clegg, W.; Harrington, R. W.; Young, C.; North, M. Tetrahedron 2007, 63, 5287-5299.
https://doi.org/10.1016/j.tet.2007.03.140

[2]. Kwiatkowski, E.; Romanowski, G.; Nowicki, W.; Kwiatkowski, M.; Suwinska, K. Polyhedron 2007, 26, 2559-2568.
https://doi.org/10.1016/j.poly.2006.12.032

[3]. Alvarez, H. M.; Andrade, J. L.; Pereira, N.; Muri, E. M. F.; Horn, A.; Barbosa, D. P.; Antunes, O. A. C. Catal. Commun. 2007, 8, 1336-1340.
https://doi.org/10.1016/j.catcom.2006.11.021

[4]. Langeslay, R. R.; Kaphan, D. M.; Marshall, C. L.; Stair, P. C.; Sattelberger, A. P.; Delferro, M. Chem. Rev. 2019, 119, 2128-2191.
https://doi.org/10.1021/acs.chemrev.8b00245

[5]. Sundararajan, M.; Park, B.; Baik. M. H. Inorg. Chem. 2019, 58, 16250-16255.
https://doi.org/10.1021/acs.inorgchem.9b02803

[6]. Adao, P.; Pessoa, J. C.; Henriques, R. T.; Kuznetsov, M. L.; Avecilla, F.; Maurya, M. R.; Kumar, U.; Correia, I. Inorg. Chem. 2009, 48, 3542-3561.
https://doi.org/10.1021/ic8017985

[7]. Thakur, S.; Banerjee, S.; Das, S.; Chattopadhyay, S. New J. Chem. 2019, 43, 18747-18759.
https://doi.org/10.1039/C9NJ04672K

[8]. Maurya, M. R.; Agarwal, S.; Bader, C.; Ebel, M.; Rehder, D. Dalton Trans. 2005, 537-544.
https://doi.org/10.1039/b416292g

[9]. Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L. Chem. Rev. 2004, 104, 849-902.
https://doi.org/10.1021/cr020607t

[10]. Rehder, D. Inorg. Chem. Commun. 2003, 6, 604-617.
https://doi.org/10.1016/S1387-7003(03)00050-9

[11]. Sakurai, H.; Kojima, Y.; Yoshikawa, Y.; Kawabe, K.; Yasui, H. Coord. Chem. Rev. 2002, 226, 187-198.
https://doi.org/10.1016/S0010-8545(01)00447-7

[12]. Maia, P. I. S.; Deflon, V. M.; Sousa, G. F.; Lemos, S. S.; Batista, A. A.; Nascimento, O. R.; Niquet, E.; Anorg, Z. Allg. Chem. 2007, 633, 783-789.
https://doi.org/10.1002/zaac.200600396

[13]. Bastos, A. M. B.; Silva, J. G.; Maia, P. I. S.; Deflon, V. M.; Batista, A. A.; Ferreira, A. V. M.; Botion, L. M.; Niquet, E.; Beraldo, H. Polyhedron 2008, 27, 1787-1794.
https://doi.org/10.1016/j.poly.2008.02.014

[14]. Crans, D. C.; Gambino, D.; Etcheverryc, S. B. New J. Chem. 2019, 43, 17535-17537.
https://doi.org/10.1039/C9NJ90156F

[15]. Maia, P. I. S.; Pavan, F. R.; Leite, C. Q. F.; Lemos, S. S.; de Sousa, G. F.; Batista, A. A.; Nascimento, O. R.; Ellena, J.; Castellano, E. E.; Niquet, E.; Deflon, V. M. Polyhedron 2009, 28, 398-406.
https://doi.org/10.1016/j.poly.2008.11.017

[16]. Zabin, S. A.; Abdelbaset, M. Eur. J. Chem. 2016, 7(3), 322‐328.
https://doi.org/10.5155/eurjchem.7.3.322-328.1444

[17]. Sutradhar, M.; Mukherjee, G.; Drew, M. G. B.; Ghosh, S. Inorg. Chem. 2006, 45, 5150-5161.
https://doi.org/10.1021/ic051120g

[18]. Pohlmann, A.; Nica, S.; Luong, T. K. K.; Plass, W. Inorg. Chem. Commun. 2005, 8, 289-292.
https://doi.org/10.1016/j.inoche.2004.12.028

[19]. Maurya, M. R.; Agarwal, S.; Abid, M.; Azam, A.; Bader, C.; Ebel, M.; Rehder, D. Dalton Trans. 2006, 937-947.
https://doi.org/10.1039/B512326G

[20]. Maia, P. I. S.; Deflon, V. M.; Souza, E. J.; Garcia, E.; Sousa, G. F.; Batista, A. A.; Figueiredo, A. T.; Niquet, E. Transit. Met. Chem. 2005, 30, 404-410.
https://doi.org/10.1007/s11243-004-6972-5

[21]. Datta, R.; Vittalacharya, R.; Gudennavar, B. S. Eur. J. Chem. 2014, 5(3), 394‐396.
https://doi.org/10.5155/eurjchem.5.3.394-396.1043

[22]. Rahman, V. P. M.; Mukhtar, S.; Ansari, W. H.; Lemiere, G. Eur. J. Med. Chem. 2005, 40, 173-184.
https://doi.org/10.1016/j.ejmech.2004.10.003

[23]. Dinda, R.; Sengupta, P.; Ghosh, S.; Mak, T. C. W. Inorg. Chem. 2002, 41, 1684-1688.
https://doi.org/10.1021/ic010865t

[24]. Gruning, C.; Schmidt, H.; Rehder, D. Inorg. Chem. Commun. 1999, 2, 57-59.
https://doi.org/10.1016/S1387-7003(99)00009-X

[25]. Schmidt, H.; Bashirpoor, M.; Rehder, D. J. Chem. Soc., Dalton Trans. 1996, 3865-3870.
https://doi.org/10.1039/dt9960003865

[26]. Maurya, M. R.; Kumar, A.; Abid, M.; Azam, A. Inorg. Chim. Acta. 2006, 359, 2439-2447.
https://doi.org/10.1016/j.ica.2006.02.032

[27]. Deflon, V. M.; Oliveira, D. M.; Sousa, G. F.; Batista, A. A.; Dinelli, L. R.; Castellano, E. Anorg. Z. Allg. Chem. 2002, 628, 1140-1144.

[28]. Xu, G.; Xia, Q. H.; Lu, X. H.; Zhang, Q.; Zhan, H. J. J. Mol. Catal. A: Chem. 2007, 266, 180-187.
https://doi.org/10.1016/j.molcata.2006.10.052

[29]. Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.

[30]. Sheldrick, G. M. SHELXL-2016, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 2016.

[31]. Vijayan, J. G. Eur. J. Chem. 2017, 8(4), 328‐332.
https://doi.org/10.5155/eurjchem.8.4.328-332.1571

[32]. Souza, P. C.; Maia, P. I. S.; Barros, H. B.; Leite, C. Q. F.; Deflon, V. M.; Pavan, F. R. Curr. Clin. Pharmacol. 2015, 10(1), 66-72.
https://doi.org/10.2174/1574884708666131229124748

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).