European Journal of Chemistry 2021, 12(3), 235-241 | doi: https://doi.org/10.5155/eurjchem.12.3.235-241.2106 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Nitroisatin dithiocarbazate: Synthesis, structural characterization, DFT, and docking studies


Pedro Henrique do Nascimento Pereira (1) orcid , Jackelinne Camargo Lima (2) orcid , Victor Marcelo Deflon (3) orcid , Geoffroy Roger Pointer Malpass (4) orcid , Ronaldo Junio de Oliveira (5) orcid , Pedro Ivo da Silva Maia (6,*) orcid

(1) Núcleo de Desenvolvimento de Compostos Bioativos, Universidade Federal do Triângulo Mineiro, Uberaba-MG, 38064-200, Brazil
(2) Instituto de Química, Universidade de São Paulo, São Paulo-SP, 13560-970, Brazil
(3) Instituto de Química, Universidade de São Paulo, São Paulo-SP, 13560-970, Brazil
(4) Núcleo de Desenvolvimento de Compostos Bioativos, Universidade Federal do Triângulo Mineiro, Uberaba-MG, 38064-200, Brazil
(5) Núcleo de Desenvolvimento de Compostos Bioativos, Universidade Federal do Triângulo Mineiro, Uberaba-MG, 38064-200, Brazil
(6) Núcleo de Desenvolvimento de Compostos Bioativos, Universidade Federal do Triângulo Mineiro, Uberaba-MG, 38064-200, Brazil
(*) Corresponding Author

Received: 31 Jan 2021 | Revised: 26 Mar 2021 | Accepted: 02 Apr 2021 | Published: 30 Sep 2021 | Issue Date: September 2021

Abstract


The reaction between 5-nitroisatin with S-benzyl dithiocarbazate affords a new isatindithio carbazate so-called NO2Isadtc (Benzyl 2-(5-nitro-2-oxoindolin-3-ylidene)hydrazinecarbodi thioate) which was characterized by means of 1H NMR, FT-IR, UV-visible and single crystal X-ray diffraction - Crystal data for C16H12N4O3S2 (M =372.42 g/mol): triclinic space group P-1, (n°. 02), a = 6.640 Å, b = 8.256 Å, c = 15.908 Å, V = 849.6 Å3, Z = 2, T = 293 K, μ(MoKα) = 0.337 mm-1, Dcalc = 1.456 g/cm3, 27515 reflections measured (2.499° ≤ 2Θ ≤ 26.524°), 3518 unique (Rint = 0.0533, Rsigma =0.0222) which were used in all calculations. The final R1 was 0.0367 (I > 2σ(I)) and wR2 was 0.1045 (all data). Computational methods were applied to NO2Isadtc and its nonsubstituted parent compound Isadtc for structure optimization, electronic distribution, and infrared calculations using B3LYP functional with 6-31G(d,p) basis set in ethanol as a polarizable continuum model. Furthermore, docking studies using human thioredoxin reductase 1 (TrxR) as enzyme target also were performed using NO2Isadtc and the optimized structure of Isadtc. The results demonstrated that both NO2Isadtc and Isadtc may act as inhibitors of TrxR, having different interactions detected, highlighting the contact between the NO2 group and the S111 at the helix which is found for NO2Isadtc.


Keywords


DFT; Isatins; Dithiocarbazates; Antitumor agents; Molecular docking; Thioredoxin reductase

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.3.235-241.2106

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 133 times | icon graph PDF Article downloaded 24 times

Funding information


CNDCT (Grants: 438316/ 2018-5, 309145/2020-1, 424095/2018-1, 307443/2015-9, 307836/2018-5 and 140219/2020-0), FAPSP (Grant 2009/54011-8) and FAPEMG (Grants: APQ-00941-14, APQ-03174-18, APQ-01988-14, APQ-00583-13 and APQ-03017-16).

References


[1]. Silva, B. N. M. da; Bastos, R. S.; Silva, B. V.; Pinto, A. C. Quim. Nova 2010, 33, 2279-2282.
https://doi.org/10.1590/S0100-40422010001000043

[2]. Chiyanzu, I.; Hansell, E.; Gut, J.; Rosenthal, P. J.; McKerrow, J. H.; Chibale, K. Bioorg. Med. Chem. Lett. 2003, 13, 3527-3530.
https://doi.org/10.1016/S0960-894X(03)00756-X

[3]. Manan, M. A. F. A.; Crouse, K. A.; Tahir, M. I. M.; Rosli, R.; How, F. N.-F.; Watkin, D. J.; Slawin, A. M. Z. J. Chem. Crystallogr. 2011, 41, 1630-1641.
https://doi.org/10.1007/s10870-011-0151-2

[4]. El-Sawi, E. A.; Mostafa, T. B.; Radwan, H. A. Eur. J. Chem. 2011, 2, 539-543.
https://doi.org/10.5155/eurjchem.2.4.539-543.55

[5]. Singh, V. P.; Singh, S.; Singh, D. P. J. Enzyme Inhib. Med. Chem. 2012, 27, 319-329.
https://doi.org/10.3109/14756366.2011.588228

[6]. Pavan, F. R.; da S Maia, P. I.; Leite, S. R. A.; Deflon, V. M.; Batista, A. A.; Sato, D. N.; Franzblau, S. G.; Leite, C. Q. F. Eur. J. Med. Chem. 2010, 45, 1898-1905.
https://doi.org/10.1016/j.ejmech.2010.01.028

[7]. Singh, R.; Kaushik, N. K. Main Group Met. Chem. 2004, 27 (6), 327-334.
https://doi.org/10.1515/MGMC.2004.27.6.327

[8]. Yekke-ghasemi, Z.; Takjoo, R.; Ramezani, M.; Mague, J. T. RSC Adv. 2018, 8, 41795-41809.
https://doi.org/10.1039/C8RA07100D

[9]. Ramilo-Gomes, F.; Addis, Y.; Tekamo, I.; Cavaco, I.; Campos, D. L.; Pavan, F. R.; Gomes, C. S. B.; Brito, V.; Santos, A. O.; Domingues, F.; Luís, Â.; Marques, M. M.; Pessoa, J. C.; Ferreira, S.; Silvestre, S.; Correia, I. J. Inorg. Biochem. 2021, 216, 111331.
https://doi.org/10.1016/j.jinorgbio.2020.111331

[10]. Yekke-ghasemi, Z.; Ramezani, M.; Mague, J. T.; Takjoo, R. New J. Chem. 2020, 44, 8878-8889.
https://doi.org/10.1039/D0NJ01187H

[11]. Fritz-Wolf, K.; Urig, S.; Becker, K. J. Mol. Biol. 2007, 370, 116-127.
https://doi.org/10.1016/j.jmb.2007.04.044

[12]. Maia, P. I. da S.; Fernandes, A. G. de A.; Silva, J. J. N.; Andricopulo, A. D.; Lemos, S. S.; Lang, E. S.; Abram, U.; Deflon, V. M. J. Inorg. Biochem. 2010, 104, 1276-1282.
https://doi.org/10.1016/j.jinorgbio.2010.08.009

[13]. Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435-435.
https://doi.org/10.1107/S002188989400021X

[14]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[15]. Abu El-Reash, G. M.; Taha, F.; Shallaby, A. M.; El-Gamal, O. A. Indian J. Chem., Sect. A: Inorg., Phys., Theor. Anal. 1991, 30 (3), 286-289. http://nopr.niscair.res.in/handle/123456789/41831 (accessed April 6, 2021).

[16]. Ali, M. A.; Mirza, A. H.; Bakar, H. J. H. A.; Bernhardt, P. V. Polyhedron 2011, 30, 556-564.
https://doi.org/10.1016/j.poly.2010.11.016

[17]. Xia, J.-J. J. Struct. Chem. 2014, 55, 130-133.
https://doi.org/10.1134/S0022476614010211

[18]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. , Gaussian 09, Revision D.01-SMP, Wallingford CT, 2013.

[19]. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. Biol. 1997, 267, 727-748.
https://doi.org/10.1006/jmbi.1996.0897

[20]. Tavares, T. T.; Azevedo, G. C.; Garcia, A.; Carpanez, A. G.; Lewer, P. M.; Paschoal, D.; Müller, B. L.; Dos Santos, H. F.; Matos, R. C.; Silva, H.; Grazul, R. M.; Fontes, A. P. S. Polyhedron 2017, 132, 95-104.
https://doi.org/10.1016/j.poly.2017.05.004

[21]. Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Proteins 2003, 52, 609-623.
https://doi.org/10.1002/prot.10465

[22]. Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Curr. Comput. Aided Drug Des. 2011, 7, 146-157.
https://doi.org/10.2174/157340911795677602

[23]. Laskowski, R. A.; Swindells, M. B. J. Chem. Inf. Model. 2011, 51, 2778-2786.
https://doi.org/10.1021/ci200227u

[24]. Gonçalves, A. C. R.; Carneiro, Z. A.; Oliveira, C. G.; Danuello, A.; Guerra, W.; Oliveira, R. J.; Ferreira, F. B.; Veloso-Silva, L. L. W.; Batista, F. A. H.; Borges, J. C.; de Albuquerque, S.; Deflon, V. M.; Maia, P. I. S. Eur. J. Med. Chem. 2017, 141, 615-631.
https://doi.org/10.1016/j.ejmech.2017.10.013

[25]. Lacerda, R. B. M.; Freitas, T. R.; Martins, M. M.; Teixeira, T. L.; da Silva, C. V.; Candido, P. A.; Oliveira, R. J. de; Júnior, C. V.; Bolzani, V. da S.; Danuello, A.; Pivatto, M. Bioorg. Med. Chem. 2018, 26, 5816-5823.
https://doi.org/10.1016/j.bmc.2018.10.032

[26]. Lopes, C. D.; Possato, B.; Gaspari, A. P. S.; Oliveira, R. J.; Abram, U.; Almeida, J. P. A.; Rocho, F. dos R.; Leitão, A.; Montanari, C. A.; Maia, P. I. S.; da Silva, J. S.; de Albuquerque, S.; Carneiro, Z. A. ACS Infect. Dis. 2019, 5, 1698-1707.
https://doi.org/10.1021/acsinfecdis.8b00284

[27]. Sousa, L. M.; Souza, W. A.; Paixão, D. A.; Fazzi, R. B.; Tezuka, D. Y.; Lopes, C. D.; Carneiro, Z. A.; Moreira, M. B.; Pivatto, M.; Netto, A. V. G.; de Albuquerque, S.; Ferreira, F. B.; De Oliveira, R. J.; Resende, J. A. L. C.; Lino, R. C.; De Oliveira Júnior, R. J.; Da Costa Ferreira, A. M.; Guerra, W. Inorg. Chim. Acta 2020, 511, 119824.
https://doi.org/10.1016/j.ica.2020.119824

[28]. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565-565.
https://doi.org/10.1107/S0021889897003117

[29]. Carneiro, Z. A.; Lima, J. C.; Lopes, C. D.; Gaspari, A. P. S.; de Albuquerque, S.; Dinelli, L. R.; Veloso-Silva, L. L. W.; Paganelli, M. O.; Libardi, S. H.; Oliveira, C. G.; Deflon, V. M.; Oliveira, R. J.; Borges, J. C.; Maia, P. I. S. Eur. J. Med. Chem. 2019, 180, 213-223.
https://doi.org/10.1016/j.ejmech.2019.07.014

[30]. Ilari, A.; Baiocco, P.; Messori, L.; Fiorillo, A.; Boffi, A.; Gramiccia, M.; Di Muccio, T.; Colotti, G. Amino Acids 2012, 42, 803-811.
https://doi.org/10.1007/s00726-011-0997-9

[31]. Messori, L.; Scaletti, F.; Massai, L.; Cinellu, M. A.; Gabbiani, C.; Vergara, A.; Merlino, A. Chem. Commun. (Camb.) 2013, 49, 10100-10102.
https://doi.org/10.1039/c3cc46400h


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Pereira, P.; Lima, J.; Deflon, V.; Malpass, G.; de Oliveira, R.; Maia, P. Eur. J. Chem. 2021, 12(3), 235-241. doi:10.5155/eurjchem.12.3.235-241.2106
Pereira, P.; Lima, J.; Deflon, V.; Malpass, G.; de Oliveira, R.; Maia, P. Nitroisatin dithiocarbazate: Synthesis, structural characterization, DFT, and docking studies. Eur. J. Chem. 2021, 12(3), 235-241. doi:10.5155/eurjchem.12.3.235-241.2106
Pereira, P., Lima, J., Deflon, V., Malpass, G., de Oliveira, R., & Maia, P. (2021). Nitroisatin dithiocarbazate: Synthesis, structural characterization, DFT, and docking studies. European Journal of Chemistry, 12(3), 235-241. doi:10.5155/eurjchem.12.3.235-241.2106
Pereira, Pedro, Jackelinne Camargo Lima, Victor Marcelo Deflon, Geoffroy Roger Pointer Malpass, Ronaldo Junio de Oliveira, & Pedro Ivo da Silva Maia. "Nitroisatin dithiocarbazate: Synthesis, structural characterization, DFT, and docking studies." European Journal of Chemistry [Online], 12.3 (2021): 235-241. Web. 20 Oct. 2021
Pereira, Pedro, Lima, Jackelinne, Deflon, Victor, Malpass, Geoffroy, de Oliveira, Ronaldo, AND Maia, Pedro Ivo. "Nitroisatin dithiocarbazate: Synthesis, structural characterization, DFT, and docking studies" European Journal of Chemistry [Online], Volume 12 Number 3 (30 September 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.3.235-241.2106

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(3), 235-241 | doi: https://doi.org/10.5155/eurjchem.12.3.235-241.2106 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.