European Journal of Chemistry 2011, 2(2), 272-275 | doi: | Get rights and content


β-Cyclodextrin mediated synthesis of 1,8-dioxooctahydroxanthenes in water

Swapna Kokkirala (1) , Narayana Murthy Sabbavarapu (2) , Venkata Durga Nageswar Yadavalli (3,*)

(1) Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad, 500607, India
(2) Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad, 500607, India
(3) Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad, 500607, India
(*) Corresponding Author

Received: 02 Dec 2010 | Revised: 22 Dec 2010 | Accepted: 05 Jan 2011 | Published: 30 Jun 2011 | Issue Date: June 2011


An experimentally simple, efficient Michael addition reaction was developed for the synthesis of various 1,8-dioxooctahydroxanthene derivatives with 1,3-cyclohexanedione/5,5-dimethyl 1,3-cyclohexane dione and different aldehydes by using β-cyclodextrin as a catalyst in water. A biomimetic approach was employed and the corresponding products were obtained in good to excellent yields. β-cyclodextrin can be recovered and reused upto four cycles without loss of catalytic activity.2_2_272_275_800


β-Cyclodextrin; Condensation; Aromatic aldehydes; 1,3-Cyclohexanedione; 5,5-Dimethyl-1,3-cyclohexanedione; Water

Full Text:

PDF /    /

DOI: 10.5155/eurjchem.2.2.272-275.359

Links for Article

| | | | | | |

| | | | | | |

Related Articles

Article Metrics

This Abstract was viewed 1661 times | PDF Article downloaded 1009 times



[1]. Dhruva Kumar, Suresh, Jagir S. Sandhu
Aldonitrones as Aldehyde Equivalents: An Efficient, Green, and Novel Protocol for the Synthesis of 1,8-Dioxo-octahydroxanthenes
Synthetic Communications  43(20), 2739, 2013
DOI: 10.1080/00397911.2012.736584

[2]. Jilla Shankar, Gaddam Satish, Bandam Santosh Pavan Anil Kumar, Yadavalli Venkata Durga Nageswar
β-Cyclodextrin catalyzed synthesis of substituted indoles in aqueous medium
European Journal of Chemistry  5(4), 668, 2014
DOI: 10.5155/eurjchem.5.4.668-670.1085

[3]. Nader Ghaffari Khaligh
Synthesis and characterization of novel binuclear task-specific ionic liquid: an efficient and sustainable sulfonic-functionalized ionic liquid for one-pot synthesis of xanthenes
Research on Chemical Intermediates  44(7), 4045, 2018
DOI: 10.1007/s11164-018-3354-8

[4]. Farhad Shirini, Asieh Yahyazadeh, Kamal Mohammadi
One-pot synthesis of various xanthene derivatives using ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient and reusable catalyst under solvent-free conditions
Chinese Chemical Letters  25(2), 341, 2014
DOI: 10.1016/j.cclet.2013.11.016

[5]. Omid Goli-Jolodar, Farhad Shirini
Succinimidinium hydrogensulfate ([H-Suc]HSO4) as a new, green and efficient ionic liquid catalyst for the synthesis of tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-one, 1-(benzothiazolylamino)phenylmethyl-2-naphthol, 1, 8-dioxo-octahydroxanthene and bis(indolyl)methane derivatives
Journal of the Iranian Chemical Society  13(6), 1077, 2016
DOI: 10.1007/s13738-016-0822-1

[6]. Haibo Tan, Xinzheng Chen, Huiyu Chen, Hongxin Liu, Shengxiang Qiu
Proline-Catalyzed Knoevenagel Condensation/[4+2] Cycloaddition Cascade Reaction: Application to Formal Synthesis of Averufin
European Journal of Organic Chemistry  2015(22), 4956, 2015
DOI: 10.1002/ejoc.201500559

[7]. S. Jashnani, M. Seddighi, M. S. N. Langarudi, F. Shirini
1,4-Piperazinium Hydrogen Sulfate {[H-pi]HSO4 } a Novel Di-Cationic Ionic Liquid: Synthesis, Characterization and Its Applications as a Catalyst in Various Organic Transformations
ChemistrySelect  3(41), 11585, 2018
DOI: 10.1002/slct.201802639

[8]. Adrián Matencio, Silvia Navarro-Orcajada, Francisco García-Carmona, José Manuel López-Nicolás
Applications of cyclodextrins in food science. A review
Trends in Food Science & Technology  104, 132, 2020
DOI: 10.1016/j.tifs.2020.08.009

[9]. Rajasekhar Ponduri, Pramod Kumar, Lakshmana Rao Vadali
PEG-400 promoted a simple, efficient, and recyclable catalyst for the one-pot eco-friendly synthesis of functionalized isoxazole substituted pyrroles in aqueous medium
Synthetic Communications  48(24), 3113, 2018
DOI: 10.1080/00397911.2018.1535078

[10]. Farhad Shirini, Somayeh Akbari-Dadamahaleh, Ali Mohammad-Khah
Rice-husk-supported FeCl3 nano-particles: Introduction of a mild, efficient and reusable catalyst for some of the multi-component reactions
Comptes Rendus Chimie  16(10), 945, 2013
DOI: 10.1016/j.crci.2013.02.019

[11]. Hossein Naeimi, Zahra Sadat Nazifi
A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives
Journal of Nanoparticle Research  15(11), , 2013
DOI: 10.1007/s11051-013-2026-2

[12]. Rajasekhar Ponduri, Pramod Kumar, Lakshmana RAO Vadali, Nagi Reddy Modugu
Water‐PEG‐400 Mediated an Efficient One‐Pot Eco‐Friendly Synthesis of Functionalized Isoxazole Substituted Chromeno[2, 3‐ b ]pyridine‐3‐carboxylate Derivatives
ChemistrySelect  3(27), 7766, 2018
DOI: 10.1002/slct.201801089

[13]. Yogayta Rajinder, Monika Gupta, Jaspreet Kour
Nickel NPs @N-doped titania: an efficient and recyclable heterogeneous nanocatalytic system for one-pot synthesis of pyrano[2,3-d]pyrimidines and 1,8-dioxo-octahydroxanthenes
Journal of the Iranian Chemical Society  16(9), 1977, 2019
DOI: 10.1007/s13738-019-01669-4

[14]. Seyyed Rasul Mousavi, Hamid Rashidi Nodeh, Elham Zamiri Afshari, Alireza Foroumadi
Graphene Oxide Incorporated Strontium Nanoparticles as a Highly Efficient and Green Acid Catalyst for One-Pot Synthesis of Tetramethyl-9-aryl-hexahydroxanthenes and 13-Aryl-5H-dibenzo[b,i]xanthene-5,7,12,14(13H)-tetraones Under Solvent-Free Conditions
Catalysis Letters  149(4), 1075, 2019
DOI: 10.1007/s10562-019-02675-0

[15]. Yogesh A. Tayade, Dipak S. Dalal
β-Cyclodextrin as a Supramolecular Catalyst for the Synthesis of 1H-Pyrazolo[1,2-b]phthalazine-5,10-dione Derivatives in Water
Catalysis Letters  147(6), 1411, 2017
DOI: 10.1007/s10562-017-2032-6

[16]. Xian-Liang Zhao, Makombe Shelton, Ke-Fang Yang
Sulfonic acid-functionalized polyallylamine (sevelamer) as an efficient reusable strong solid acid catalyst for the synthesis of xanthenes derivatives
BMC Chemistry  13(1), , 2019
DOI: 10.1186/s13065-019-0609-4

[17]. Sadegh Rostamnia, Esmail Doustkhah, Asadollah Hassankhani
Application of the β-cyclodextrin supramolecules as a green accelerator hosts in one-step preparation of highly functionalised rhodanine scaffolds
Supramolecular Chemistry  27(1-2), 1, 2015
DOI: 10.1080/10610278.2014.890200

[18]. Yogesh A. Tayade, Swapnil A. Padvi, Yogesh B. Wagh, Dipak S. Dalal
β-Cyclodextrin as a supramolecular catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole and spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] in aqueous medium
Tetrahedron Letters  56(19), 2441, 2015
DOI: 10.1016/j.tetlet.2015.03.084

[19]. Deepa, Geeta D. Yadav, Mohd J. Aalam, Pooja Chaudhary, Surendra Singh
Synthesis of Dihydropyrimidinones (DHPMs) and Hexahydro Xanthene Catalyzed by 1,4-Diazabicyclo [2.2.2] Octane Triflate Under Solvent-Free Condition
Current Organic Synthesis  16(5), 776, 2019
DOI: 10.2174/1570179415666181113154232

[20]. Manne Madhava Reddy, Akella Sivaramakrishna
A Facile L‐Proline Catalyzed One‐Pot Synthesis of Xanthene and Acridine Based Quinolones via Knoevenagel Condensation Reaction
ChemistrySelect  5(16), 4816, 2020
DOI: 10.1002/slct.201904921

[21]. Ayyakannu Arumugam Napoleon, Fazlur-Rahman Nawaz Khan
Potential anti-tubercular and in vitro anti-inflammatory agents: 9-substituted 1,8-dioxo-octahydroxanthenes through cascade/domino reaction by citric fruit juices
Medicinal Chemistry Research  23(11), 4749, 2014
DOI: 10.1007/s00044-014-1033-x

[22]. Farhad Shirini, Peyman Najafi Moghadam, Simin Moayedi, Mohadeseh Seddighi
Introduction of O-sulfonated poly(4-vinylpyrrolidonium) chloride as a polymeric and reusable catalyst for the synthesis of xanthene derivatives
RSC Advances  4(73), 38581, 2014
DOI: 10.1039/C4RA04915B

[23]. Farhad Shirini, Masoumeh Abedini, Mohaddeseh Seddighi, Omid Goli Jolodar, Mohadeseh Safarpoor, Nikoo Langroodi, Solmaz Zamani
Introduction of a new bi-SO3H ionic liquid based on 2,2′-bipyridine as a novel catalyst for the synthesis of various xanthene derivatives
RSC Adv.  4(108), 63526, 2014
DOI: 10.1039/C4RA12361A

[24]. Sandeep S. Kahandal, Anand S. Burange, Sandip R. Kale, Pepijn Prinsen, Rafael Luque, Radha V. Jayaram
An efficient route to 1,8-dioxo-octahydroxanthenes and -decahydroacridines using a sulfated zirconia catalyst
Catalysis Communications  97, 138, 2017
DOI: 10.1016/j.catcom.2017.03.017

[25]. Ji Zhou, Dan Liu, Fengshou Wu, Yun Xiong, Muhammad Aqeel Ashraf
Synthesis of SCMNPs@imine/SO3H magnetic nanocatalyst by chlorosulfonic acid as sulfonating agents and their application for the preparation of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one and 1,8-dioxooctahydroxanthene derivatives
Materials Research Express  7(1), 015801, 2019
DOI: 10.1088/2053-1591/ab5c90

[26]. Farhad Shirini, Mohaddeseh Safarpoor Nikoo Langarudi, Mohadeseh Seddighi, Omid Goli Jolodar
Bi-SO3H functionalized ionic liquid based on DABCO as a mild and efficient catalyst for the synthesis of 1,8-dioxo-octahydro-xanthene and 5-arylmethylene-pyrimidine-2,4,6-trione derivatives
Research on Chemical Intermediates  41(11), 8483, 2015
DOI: 10.1007/s11164-014-1905-1

[27]. Ayyakannu Arumugam Napoleon, Fazlur-Rahman Nawaz Khan, Euh Duck Jeong, Eun Hyuk Chung
Regioselective synthesis of 3,4,6,7-tetrahydro-3,3-dimethyl-9-phenyl-2H-xanthene-1,8(5H,9H)-diones through ascorbic acid catalyzed three-component domino reaction
Tetrahedron Letters  55(41), 5656, 2014
DOI: 10.1016/j.tetlet.2014.08.040

[28]. Someshwar D. Dindulkar, Daham Jeong, Eunae Cho, Dongjin Kim, Seunho Jung
Microbial cyclosophoraose as a catalyst for the synthesis of diversified indolyl 4H-chromenes via one-pot three component reactions in water
Green Chemistry  18(12), 3620, 2016
DOI: 10.1039/C6GC00137H

[29]. Hossein Naeimi, Zahra Sadat Nazifi
A facile one-pot ultrasound assisted synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by Brønsted acidic ionic liquid (BAIL) under green conditions
Journal of Industrial and Engineering Chemistry  20(3), 1043, 2014
DOI: 10.1016/j.jiec.2013.06.041

[30]. Haibo Tan, Hongxin Liu, Xinzheng Chen, Huiyu Chen, Shengxiang Qiu
Racemic total synthesis of dactyloidin and demethyldactyloidin through the dl-proline-catalyzed Knoevenagel condensation/[4 + 2] cycloaddition cascade
Organic & Biomolecular Chemistry  13(39), 9977, 2015
DOI: 10.1039/C5OB01636C

[31]. Mohsen Abbasi
β-Cyclodextrin as an Efficient and Recyclable Supramolecular Catalyst for the Synthesis of Heterocyclic Compounds
Journal of the Chinese Chemical Society  64(8), 896, 2017
DOI: 10.1002/jccs.201600887


[1]. Hideo, T. (1981) Jpn Tokkyo Koho JP 56005480.

[2]. Poupelin, J. P.; Saint-Ruf, G.; Foussard-Blanpin, O.; Narcisse, G.; Uchida Ernouf, G.; Lacroix, R. Eur. J. Med. Chem. 1978, 13, 67-75.

[3]. Lambert, R. W.; Martin, J. A.; Merrett, J. H.; Parkes, K. E. B.; Thomas, G. J. 1997, PCT Int. Appl. WO9706178.

[4]. Ion, R. M.; Planner, A.; Wiktorowicz, K.; Frackowiak. D. Acta Biochim. Pol. 1998, 45, 833-845.

[5]. Hatakeyma, S.; Ochi, N.; Numata, H.; Takano, S. J. Chem. Soc. Chem. Commun. 1988, 1202-1204.

[6]. Hilderbrand, S. A.; Weissleder, R. Tetrahedron Lett. 2007, 48, 4383-4385.
PMid:19834587 PMCid:2761723

[7]. Menchen, S. M.; Benson, S. C.; Lam, J. Y. L.; Zhen, W.; Sun, D.; Rosenblum, B. B.; Kha, S. H.; Taing, M. US Patent, 2003, 6,583, 168.

[8]. Banerjee, A.; Mukherjee, A. K. Stain Technol. 1981, 56, 83-85.

[9]. Reynolds, G. A.; Tuccio, S. A.; Peterson, O. G.; Specht, D. P. German Patent, 1971, DE2109040.

[10]. Horning, E. C.; Horning, M. G. J. Org. Chem. 1946, 11, 95-99.

[11]. Wang, J. Q.; Harvey, R. G. Tetrahedron 2002, 58, 5927-5931.

[12]. Casiraghi, G.; Casnati, G.; Cornia, M. Tetrahedron Lett. 1973, 14, 679-682.

[13]. Casiraghi, G.; Casnati, G.; Catellani, M.; Cornia, M. Synthesis 1974, 564-564.

[14]. Jin, T. S.; Zhang, J. S.; Wang, A. Q.; Li, T. S. Synth. Commun. 2005, 35, 2339-2345.

[15]. Hua, G. P.; Li, T. J.; Zhu, S. L.; Zhang, X. J. Chin. J. Org. Chem. 2005, 25(6), 716-719.

[16]. Jin, T. S.; Qi, N.; Li, M.; Han, L. S.; Liu, L. B.; Li, T. S. Asian. J. Chem. 2007, 19, 3803-3809.

[17]. Jin, T. S.; Zhang, J. S.; Xio, J.C.; Wang, A. Q.; Li, T. S. Synlett. 2004, 5, 866-870.

[18]. Khosropour, A. R.; Khodaei, M. M.; Moghannian, H. Synlett. 2005, 6, 955-958.

[19]. Das, B.; Thirupathi, P.; Ravinder Reddy, K.; Ravikanth, B.; Nagarapu, L. Catal. Commun. 2007, 8, 535-538.

[20]. Das, B.; Thirupathi, P.; Mahender, I.; Reddy, V. S.; Rao. Y. K.; J. Mol. Catal. A: Chem. 2006, 247, 233-239.

[21]. Shakibaei, G. I.; Mirzaei, P.; Bazgir, A. Appl. Catal. A: Gen. 2007, 325, 188-192.

[22]. Dabiri, M.; Azimi, S. C.; Bazgir, A. Chem. Pap. 2008, 62, 522-526.

[23]. Zhang, Z. H.; Tao, X. Y. Aus. J. Chem. 2008, 61, 77-79.

[24]. Li, J. J.; Tao, X. Y.; Zhang, Z. H. Phosphorus Sulfur. 2008, 183, 1672-1678.

[25]. Song, G.; Wang, B.; Luo, H.; Yang, L. Catal. Commun. 2007, 8, 673-676.

[26]. John, A.; Yadav, P.; J. P.; Palaniappan, S. J. Mol. Catal. A: Chem. 2006, 248, 121-125.

[27]. Srihari, P.; Mandal, S.S.; Reddy, J.S.S.; Rao, R. S.; Yadav, J.S. Chin. Chem. Lett. 2008, 19, 771-774.

[28]. Kantevari, S.; Bantu, R.; Nagarapu, L. J. Mol. Catal A: Chem. 2007, 269, 53-57.

[29]. Lu, H. Y.; Li, J. J.; Zhang, Z. H. Appl. Organometal. Chem. 2009, 23, 165-169.

[30]. Karthikeyana, G.; Pandurangana, A. J. Mol. Catal. A: Chem. 2009, 311, 36-45.

[31]. Kumar, D.; Sandhu, J. S. Synth. Commun. 2010, 40, 510-517.

[32]. Li, J.; Lu, L.; Su, W. Tetrahedron Lett. 2010, 51, 2434-2437.

[33]. Kang, H.; Hu, Y.; Huang, H.; Wei, P. Heterocycl. Commun. 2008, 14, 223-227.

[34]. Ma, J. J.; Wang, C.; Wu, Q. H.; Tang, R. X.; Liu, H. Y.; Li, Q. Heteroatom. Chem. 2008, 19, 609-611.

[35]. Fang, D.; Gong, K.; Liu, Z. L. Catal. Lett. 2009, 127, 291-295.

[36]. Narender, M.; Reddy, M. S.; Sridhar, R.; Nageswar, Y. V. D.; Rao, K. R. Tetrahedron Lett. 2005, 46, 5953-5955.

[37]. Reddy, M. S.; Narender, M.; Nageswar, Y. V. D.; Rao, K. R. Tetrahedron Lett. 2005, 46, 6437-6439.

[38]. Sridhar, R.; Srinivas, B.; Kumar, V. P.; Reddy, V. P.; Kumar, A. V.; Rao, K. R. Adv. Synth. Catal. 2008, 350, 1489-1492.

[39]. Madhav, B.; Murthy, S. N.; Reddy, V. P.; Rao, K. R.; Nageswar, Y. V. D. Tetrahedron Lett. 2009, 50, 6025-6028.

[40]. Murthy, S. N.; Madhav, B.; Kumar, A. V.; Rao, K. R.; Nageswar, Y. V. D. Tetrahedron 2009, 65, 5251-5256.

[41]. Murthy, S. N.; Madhav, B.; Reddy, V. P.; Nageswar, Y. V. D. Tetrahedron Lett. 2010, 51, 3649-3653.

[42]. Shankar, J.; Karnakar, K.; Srinivas, B.; Nageswar, Y. V. D. Tetrahedron Lett. 2010, 51, 3938-3939.

[43]. Kirschner, D.; Jaramillo, M.; Green, T.; Hapiot, F.; Leclercq, L.; Bricout, H.; Monflier, E. J. Mol. Catal. A: Chem. 2008, 286, 11-20.

[44]. Legrand, F. X.; Sauthier, M.; Flahaut, C.; Hachani, J.; Elfakir, C.; Fourmentin, S.; Tilloy, S.; Monflier, E. J. Mol. Catal. A: Chem. 2009, 300, 72-77.

[45]. Six, N.; Menuel, S.; Bricout, H.; Hapiot, F.; Monflier, E. Adv. Synth. Catal. 2010, 352, 1467-1475.

[46]. Bricout, H.; Hapiot, F.; Ponchel, A.; Tilloy, S.; Monflier, E. Curr. Org. Chem. 2010, 14, 1296-1307.

Supporting information

The Supplementary Material for this article can be found online at: Supplementary files

How to cite

Kokkirala, S.; Sabbavarapu, N.; Yadavalli, V. Eur. J. Chem. 2011, 2(2), 272-275. doi:10.5155/eurjchem.2.2.272-275.359
Kokkirala, S.; Sabbavarapu, N.; Yadavalli, V. β-Cyclodextrin mediated synthesis of 1,8-dioxooctahydroxanthenes in water. Eur. J. Chem. 2011, 2(2), 272-275. doi:10.5155/eurjchem.2.2.272-275.359
Kokkirala, S., Sabbavarapu, N., & Yadavalli, V. (2011). β-Cyclodextrin mediated synthesis of 1,8-dioxooctahydroxanthenes in water. European Journal of Chemistry, 2(2), 272-275. doi:10.5155/eurjchem.2.2.272-275.359
Kokkirala, Swapna, Narayana Murthy Sabbavarapu, & Venkata Durga Nageswar Yadavalli. "β-Cyclodextrin mediated synthesis of 1,8-dioxooctahydroxanthenes in water." European Journal of Chemistry [Online], 2.2 (2011): 272-275. Web. 29 Sep. 2020
Kokkirala, Swapna, Sabbavarapu, Narayana, AND Yadavalli, Venkata. "β-Cyclodextrin mediated synthesis of 1,8-dioxooctahydroxanthenes in water" European Journal of Chemistry [Online], Volume 2 Number 2 (30 June 2011)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

| | | | | | |

| | | | | |

Save to Zotero Save to Mendeley

European Journal of Chemistry 2011, 2(2), 272-275 | doi: | Get rights and content


  • There are currently no refbacks.

Copyright (c)

© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.