European Journal of Chemistry

Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons



Main Article Content

Ana Maria Carvajal-Bernal
Fernando Gomez-Granados
Liliana Giraldo
Juan Carlos Moreno-Pirajan

Abstract

The Sips model for heterogeneous systems was used to describe the immersion enthalpy, maximum adsorption capacity at three temperatures, namely, 283, 291 and 308 K; and interactions between phenol aqueous solutions and activated carbon modified on its surfaces by impregnation with 6.0 M HNO3 and 3.0 M H3PO4 solutions. Activated carbon properties, such as porosity, Brunauer-Emmett-Teller (BET) surface area and volume and size pore distributions, were determined using N2 adsorption at 77 K. Surface area values were calculated to be between 469 and 864 m2/g. Also, the pH at the point of zero charge, acidity and total basicity for the activated carbons were obtained. The result showed that the Sips model in addition to describe the phenol concentration in equilibrium can be used to study immersion enthalpy when 1/ns is equal to 1.


icon graph This Abstract was viewed 3903 times | icon graph Article PDF downloaded 780 times

How to Cite
(1)
Carvajal-Bernal, A. M.; Gomez-Granados, F.; Giraldo, L.; Moreno-Pirajan, J. C. Application of the Sips Model to the Calculation of Maximum Adsorption Capacity and Immersion Enthalpy of Phenol Aqueous Solutions on Activated Carbons. Eur. J. Chem. 2017, 8, 112-118.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Anisuzzaman, S.; Bono, A.; Krishnaiah, D.; Tan, Y. J. King Saud Univ. Eng. Sci. 2016, 28, 47-55.

[2]. Luo, Z.; Gao, M.; Yang, S.; Yang, Q. Colloids Surf. A 2015, 482, 222-230.
https://doi.org/10.1016/j.colsurfa.2015.05.014

[3]. Yang, G.; Chen, H.; Qin, H.; Feng, Y. Appl. Surface Sci. 2014, 293, 299-305.
https://doi.org/10.1016/j.apsusc.2013.12.155

[4]. Blanco, D.; Giraldo, L.; Moreno, J. Rev. Colomb. Quim. 2010, 39(2), 237-246.

[5]. Stoeckli, F.; Lopez-Ramon, M.; Moreno-Castilla, C. Langmuir 2001, 17, 3301-3306.
https://doi.org/10.1021/la0014407

[6]. Sips, R. J. Chem. Phys. 1948, 16, 490-495.
https://doi.org/10.1063/1.1746922

[7]. Wu, F. C.; Wu, P. H.; Tseng, R. L.; Juang, R. S. J. Taiwan Inst. Chem. Eng. 2014, 45, 2628-2639.

[8]. Hamdaoui, O.; Naffrechoux, E. J. Hazard. Mat. 2007, 147, 401-411.
https://doi.org/10.1016/j.jhazmat.2007.01.023

[9]. Do, D. D. Adsorption Analysis: Equilibria and Kinetics. Series on Chemical Engineering 1998, 2, 49-148.
https://doi.org/10.1142/9781860943829

[10]. Giraldo, L.; Moreno-Pirajan, J. C. J. Anal. Appl. Pyrol. 2014, 106, 41-47.
https://doi.org/10.1016/j.jaap.2013.12.007

[11]. Silvestre-Albero, J.; Gomez de Salazar, C.; Sepulveda-Escribano, A.; Rodriguez-Reinoso, F. Colloids Surf. A 2001, 187-188, 151-165.
https://doi.org/10.1016/S0927-7757(01)00620-3

[12]. Carvajal-Bernal, A. M.; Gomez-Granados, F.; Giraldo, L.; Moreno-Piraján, J. C. Adsorption 2016, 22, 13-21.
https://doi.org/10.1007/s10450-015-9725-1

[13]. Carvajal-Bernal, A. M.; Gomez-Granados, F.; Giraldo, L.; Moreno-Piraján, J. C. Microporous Mesoporous Mater. 2015, 209, 150-156.
https://doi.org/10.1016/j.micromeso.2015.01.052

[14]. Vargas, D. P.; Giraldo, L.; Moreno-Pirajan, J. C. J. Mol. Sci. 2012, 13, 8388-8397.
https://doi.org/10.3390/ijms13078388

[15]. Boehm, H. P. Carbon 1994, 32, 759-769.
https://doi.org/10.1016/0008-6223(94)90031-0

[16]. Qing-Song, L.; Tong, Z.; Peng, W.; Ji-Ping, J.; Nan, L. Chem. Eng. J. 2010, 157, 348-356.
https://doi.org/10.1016/j.cej.2009.11.013

[17]. Babic, B. M.; Milonjic, S. K.; Polovina, M. J.; Kaludierovic, B. V. Carbon 1999, 37, 477-481.
https://doi.org/10.1016/S0008-6223(98)00216-4

[18]. Moreno, J. C.; Giraldo, L. Review Sci. Inst. 2005, 76, 54-103.
https://doi.org/10.1063/1.1915522

[19]. Brunauer, S.; Emmet, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60(2), 309-319.
https://doi.org/10.1021/ja01269a023

[20]. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87, 1051-1069.
https://doi.org/10.1515/pac-2014-1117

[21]. Dubinin, M. M.; Radushkevich, L. V. Zentr. 1947, 1, 875-890.

[22]. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L Pierotti, R. A.; Rouquerol, J. Pure Appl. Chem. 1985, 57, 603-619.

[23]. Giles, C. H.; Mac Ewan, T. H.; Nakhwa, S. N.; Smith, D. J. Chem. Soc. 1960, 3973-3993.
https://doi.org/10.1039/jr9600003973

[24]. Andreu, A.; Stoeckli, H. F.; Bradley, R. H. Carbon 2007, 45, 1854-1864.
https://doi.org/10.1016/j.carbon.2007.04.025

[25]. Aburub, A.; Wurster, D. E. J. Colloid Int. Sci. 2006, 296, 79-85.
https://doi.org/10.1016/j.jcis.2005.08.035

Supporting Agencies

Colciencias’s Doctoral Program, Colombia
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).