European Journal of Chemistry 2017, 8(2), 112-118 | doi: https://doi.org/10.5155/eurjchem.8.2.112-118.1556 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons


Ana Maria Carvajal-Bernal (1) , Fernando Gomez-Granados (2) , Liliana Giraldo (3) , Juan Carlos Moreno-Pirajan (4,*)

(1) Laboratorio de Calorimetría, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, 451-124 CP 11321142, Bogotá, Colombia
(2) Laboratorio de Calorimetría, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, 451-124 CP 11321142, Bogotá, Colombia
(3) Laboratorio de Calorimetría, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, 451-124 CP 11321142, Bogotá, Colombia
(4) Laboratorio de Sólidos Porosos y Calorimetría, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Carrera 1 No 18 A-10, CP 110311484, Bogotá, Colombia
(*) Corresponding Author

Received: 19 Feb 2017 | Revised: 14 Mar 2017 | Accepted: 18 Mar 2017 | Published: 30 Jun 2017 | Issue Date: June 2017

Abstract


The Sips model for heterogeneous systems was used to describe the immersion enthalpy, maximum adsorption capacity at three temperatures, namely, 283, 291 and 308 K; and interactions between phenol aqueous solutions and activated carbon modified on its surfaces by impregnation with 6.0 M HNO3 and 3.0 M H3PO4 solutions. Activated carbon properties, such as porosity, Brunauer-Emmett-Teller (BET) surface area and volume and size pore distributions, were determined using N2 adsorption at 77 K. Surface area values were calculated to be between 469 and 864 m2/g. Also, the pH at the point of zero charge, acidity and total basicity for the activated carbons were obtained. The result showed that the Sips model in addition to describe the phenol concentration in equilibrium can be used to study immersion enthalpy when 1/ns is equal to 1.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).


Editor-in-Chief
European Journal of Chemistry

Keywords


Phenol; Nitric acid; Sips model; Adsorption; Activated carbon; Immersion enthalpy

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.8.2.112-118.1556

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 3686 times | icon graph PDF Article downloaded 643 times

Funding information


Colciencias’s Doctoral Program, Colombia

Citations

/


[1]. Paola Rodríguez-Estupiñán, Liliana Giraldo, Juan Carlos Moreno-Piraján
Adsorption calorimetry
Journal of Thermal Analysis and Calorimetry  138(4), 2577, 2019
DOI: 10.1007/s10973-019-08549-2
/


[2]. Reza Darvishi, Hajar Moghadas, Ali Moshkriz
Oxidized gum arabic cross-linked pectin/O-carboxymethyl chitosan: An antibiotic adsorbent hydrogel
Korean Journal of Chemical Engineering  39(5), 1350, 2022
DOI: 10.1007/s11814-021-1038-3
/


[3]. Yanbo Zhou, Yonghua Hu, Weiwei Huang, Guang Cheng, Changzheng Cui, Jun Lu
A novel amphoteric β-cyclodextrin-based adsorbent for simultaneous removal of cationic/anionic dyes and bisphenol A
Chemical Engineering Journal  341, 47, 2018
DOI: 10.1016/j.cej.2018.01.155
/


[4]. Terri Zhuan Ean Lee, Jianghong Zhang, Yichen Feng, Xin Lin, Jinqin Zhou
Adsorption of Cd (II) Ions by Coconut Copra: Isotherm and Regeneration Studies
IOP Conference Series: Earth and Environmental Science  657(1), 012026, 2021
DOI: 10.1088/1755-1315/657/1/012026
/


[5]. Jiyeon Choi, Dong-Ik Song, Won Sik Shin
Sorption of phenols on hexadecyltrimethylammonium- modified bentonite: Application of Polanyi−Manes potential theory
Energy & Environment  32(5), 902, 2021
DOI: 10.1177/0958305X20977286
/


[6]. Miguel Pereira de Oliveira, Carlos Schnorr, Theodoro da Rosa Salles, Franciele da Silva Bruckmann, Luiza Baumann, Edson Irineu Muller, Wagner Jesus da Silva Garcia, Artur Harres de Oliveira, Luis F. O. Silva, Cristiano Rodrigo Bohn Rhoden
Efficient Uptake of Angiotensin-Converting Enzyme II Inhibitor Employing Graphene Oxide-Based Magnetic Nanoadsorbents
Water  15(2), 293, 2023
DOI: 10.3390/w15020293
/


[7]. Ana María Carvajal-Bernal, Fernando Gómez-Granados, Liliana Giraldo, Juan Carlos Moreno-Piraján, Marco Balsamo, Alessandro Erto
Kinetic and thermodynamic study of n-pentane adsorption on activated carbons modified by either carbonization or impregnation with ammonium hydroxide
Microporous and Mesoporous Materials  302, 110196, 2020
DOI: 10.1016/j.micromeso.2020.110196
/


[8]. Domenico Pirozzi, Michele Pansini, Antonello Marocco, Serena Esposito, Gabriele Barrera, Paola Tiberto, Paolo Allia, Filomena Sannino
Adsorption of gallic acid by tailor-made magnetic metal-ceramic nanocomposites
Journal of Molecular Liquids  371, 121083, 2023
DOI: 10.1016/j.molliq.2022.121083
/


[9]. Lady Johana Cárdenas, Liliana Giraldo, Juan Carlos Moreno-Piraján
Physicochemical Characterization of Santa Barbara Amorphous-15 (SBA-15) and Its Functionalization with Polyaniline for Phenol Adsorption
Processes  10(2), 188, 2022
DOI: 10.3390/pr10020188
/


[10]. Mengjiao Zhang, Liyun Zhu, Changhua He, Xiaojun Xu, Zhengyang Duan, Shuli Liu, Mingyao Song, Shumin Song, Jiemei Shi, Yu’e Li, Guangzhu Cao
Adsorption performance and mechanisms of Pb(II), Cd(II), and Mn(II) removal by a β-cyclodextrin derivative
Environmental Science and Pollution Research  26(5), 5094, 2019
DOI: 10.1007/s11356-018-3989-4
/


[11]. Xiaolin Liu, Yan Wang, Hui Ju, Fan Yang, Lin Zhang, Xuan Luo
Micro-mesoporous divinyl benzene-based polymer for ultrafast, effective and selective removal of cationic dyes
Materials Chemistry and Physics  255, 123564, 2020
DOI: 10.1016/j.matchemphys.2020.123564
/


[12]. Oscar E. Medina, Dahiana Galeano-Caro, Bergit Brattekås, Agustín F. Pérez-Cadenas, Francisco Carrasco-Marín, Farid B. Cortés, Camilo A. Franco
Simultaneous CO2 adsorption and conversion over Ni-Pd supported CeO2 nanoparticles during catalytic n-C7 asphaltene gasification
Fuel  342, 127733, 2023
DOI: 10.1016/j.fuel.2023.127733
/


[13]. Andrés I. Casoni, Pamela Mendioroz, María A. Volpe, Victoria S. Gutierrez
Magnetic amendment material based on bio-char from edible oil industry waste. Its performance on aromatic pollutant removal from water
Journal of Environmental Chemical Engineering  8(2), 103559, 2020
DOI: 10.1016/j.jece.2019.103559
/


[14]. Xiaolin Liu, Yong Zhang, Hui Ju, Fan Yang, Xuan Luo, Lin Zhang
Uptake of methylene blue on divinylbenzene cross-linked chitosan/maleic anhydride polymer by adsorption process
Colloids and Surfaces A: Physicochemical and Engineering Aspects  629, 127424, 2021
DOI: 10.1016/j.colsurfa.2021.127424
/


References


[1]. Anisuzzaman, S.; Bono, A.; Krishnaiah, D.; Tan, Y. J. King Saud Univ. Eng. Sci. 2016, 28, 47-55.

[2]. Luo, Z.; Gao, M.; Yang, S.; Yang, Q. Colloids Surf. A 2015, 482, 222-230.
https://doi.org/10.1016/j.colsurfa.2015.05.014

[3]. Yang, G.; Chen, H.; Qin, H.; Feng, Y. Appl. Surface Sci. 2014, 293, 299-305.
https://doi.org/10.1016/j.apsusc.2013.12.155

[4]. Blanco, D.; Giraldo, L.; Moreno, J. Rev. Colomb. Quim. 2010, 39(2), 237-246.

[5]. Stoeckli, F.; Lopez-Ramon, M.; Moreno-Castilla, C. Langmuir 2001, 17, 3301-3306.
https://doi.org/10.1021/la0014407

[6]. Sips, R. J. Chem. Phys. 1948, 16, 490-495.
https://doi.org/10.1063/1.1746922

[7]. Wu, F. C.; Wu, P. H.; Tseng, R. L.; Juang, R. S. J. Taiwan Inst. Chem. Eng. 2014, 45, 2628-2639.

[8]. Hamdaoui, O.; Naffrechoux, E. J. Hazard. Mat. 2007, 147, 401-411.
https://doi.org/10.1016/j.jhazmat.2007.01.023

[9]. Do, D. D. Adsorption Analysis: Equilibria and Kinetics. Series on Chemical Engineering 1998, 2, 49-148.
https://doi.org/10.1142/9781860943829

[10]. Giraldo, L.; Moreno-Pirajan, J. C. J. Anal. Appl. Pyrol. 2014, 106, 41-47.
https://doi.org/10.1016/j.jaap.2013.12.007

[11]. Silvestre-Albero, J.; Gomez de Salazar, C.; Sepulveda-Escribano, A.; Rodriguez-Reinoso, F. Colloids Surf. A 2001, 187-188, 151-165.
https://doi.org/10.1016/S0927-7757(01)00620-3

[12]. Carvajal-Bernal, A. M.; Gomez-Granados, F.; Giraldo, L.; Moreno-Piraján, J. C. Adsorption 2016, 22, 13-21.
https://doi.org/10.1007/s10450-015-9725-1

[13]. Carvajal-Bernal, A. M.; Gomez-Granados, F.; Giraldo, L.; Moreno-Piraján, J. C. Microporous Mesoporous Mater. 2015, 209, 150-156.
https://doi.org/10.1016/j.micromeso.2015.01.052

[14]. Vargas, D. P.; Giraldo, L.; Moreno-Pirajan, J. C. J. Mol. Sci. 2012, 13, 8388-8397.
https://doi.org/10.3390/ijms13078388

[15]. Boehm, H. P. Carbon 1994, 32, 759-769.
https://doi.org/10.1016/0008-6223(94)90031-0

[16]. Qing-Song, L.; Tong, Z.; Peng, W.; Ji-Ping, J.; Nan, L. Chem. Eng. J. 2010, 157, 348-356.
https://doi.org/10.1016/j.cej.2009.11.013

[17]. Babic, B. M.; Milonjic, S. K.; Polovina, M. J.; Kaludierovic, B. V. Carbon 1999, 37, 477-481.
https://doi.org/10.1016/S0008-6223(98)00216-4

[18]. Moreno, J. C.; Giraldo, L. Review Sci. Inst. 2005, 76, 54-103.
https://doi.org/10.1063/1.1915522

[19]. Brunauer, S.; Emmet, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60(2), 309-319.
https://doi.org/10.1021/ja01269a023

[20]. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87, 1051-1069.
https://doi.org/10.1515/pac-2014-1117

[21]. Dubinin, M. M.; Radushkevich, L. V. Zentr. 1947, 1, 875-890.

[22]. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L Pierotti, R. A.; Rouquerol, J. Pure Appl. Chem. 1985, 57, 603-619.

[23]. Giles, C. H.; Mac Ewan, T. H.; Nakhwa, S. N.; Smith, D. J. Chem. Soc. 1960, 3973-3993.
https://doi.org/10.1039/jr9600003973

[24]. Andreu, A.; Stoeckli, H. F.; Bradley, R. H. Carbon 2007, 45, 1854-1864.
https://doi.org/10.1016/j.carbon.2007.04.025

[25]. Aburub, A.; Wurster, D. E. J. Colloid Int. Sci. 2006, 296, 79-85.
https://doi.org/10.1016/j.jcis.2005.08.035


How to cite


Carvajal-Bernal, A.; Gomez-Granados, F.; Giraldo, L.; Moreno-Pirajan, J. Eur. J. Chem. 2017, 8(2), 112-118. doi:10.5155/eurjchem.8.2.112-118.1556
Carvajal-Bernal, A.; Gomez-Granados, F.; Giraldo, L.; Moreno-Pirajan, J. Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons. Eur. J. Chem. 2017, 8(2), 112-118. doi:10.5155/eurjchem.8.2.112-118.1556
Carvajal-Bernal, A., Gomez-Granados, F., Giraldo, L., & Moreno-Pirajan, J. (2017). Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons. European Journal of Chemistry, 8(2), 112-118. doi:10.5155/eurjchem.8.2.112-118.1556
Carvajal-Bernal, Ana, Fernando Gomez-Granados, Liliana Giraldo, & Juan Carlos Moreno-Pirajan. "Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons." European Journal of Chemistry [Online], 8.2 (2017): 112-118. Web. 23 Sep. 2023
Carvajal-Bernal, Ana, Gomez-Granados, Fernando, Giraldo, Liliana, AND Moreno-Pirajan, Juan. "Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons" European Journal of Chemistry [Online], Volume 8 Number 2 (30 June 2017)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.8.2.112-118.1556


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2017, 8(2), 112-118 | doi: https://doi.org/10.5155/eurjchem.8.2.112-118.1556 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.