European Journal of Chemistry

Structural study of three heteroaryl oximes, heteroaryl-N=OH: Compounds forming strong C3 molecular chains

Crossmark


Main Article Content

John Nicolson Low
James Lewis Wardell
Cristiane Franca da Costa
Marcus Vicinius Nora Souza
Ligia Rebelo Gomes

Abstract

In order to further investigate the structural chemistry of oximes and to further establish the main structural arrangements adopted, we have determined the crystal structure of and carried out Hirshfeld surface calculations on three heteroaryl oximes, namely (Z)-thiophene-2-carbaldehyde oxime (1), (Z)-1H-pyrrole-2 carbaldehyde oxime (2) and (Z)-5-nitrofuran-2-carbaldehyde oxime (3). As confirmed by both techniques, the major intermolecular interactions in each compound are classical N—H···O hydrogen bonds, which link the molecules into C3 chains. Such an arrangement has been previous reported as an important aggregation mode for oximes. Secondary interactions, C—H···π and C—H···O interactions, in compounds 1 and 2, and interactions involving the nitro group oxygen atoms in compound 3 link the chains into three dimensional arrays.


icon graph This Abstract was viewed 1728 times | icon graph Article PDF downloaded 717 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Low, J. N.; Wardell, J. L.; da Costa, C. F.; Souza, M. V. N.; Gomes, L. R. Structural Study of Three Heteroaryl Oximes, Heteroaryl-N=OH: Compounds Forming Strong C3 Molecular Chains. Eur. J. Chem. 2018, 9, 151-160.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Abele, E.; Abele, R.; Lukevics, E. Chem. Heterocycl. Cmpds. 2018, 44, 769-792.
https://doi.org/10.1007/s10593-008-0110-9

[2]. Nikitjuka, A.; Jirgensons, A. Chem. Heterocycl. Cmpds. 2014, 49, 1544-1559.
https://doi.org/10.1007/s10593-014-1407-5

[3]. Martinez-Pascual, R.; Meza-Reyes, S.; Vega-Baez, J. L.; Merino-Montiel, P.; Padron, J. M.; Mendoza, A.; Montiel-Smith, S. Steroids 2017, 122, 24-33.
https://doi.org/10.1016/j.steroids.2017.03.008

[4]. Qin, H. L.; Leng, J.; Youssif, B. G. M.; Amjad, M. W.; Raja, M. A. G.; Hussain, M. A.; Hussain, Z.; Kazmi, S. N.; Bukhari, S. N. A. Chem. Bio. Drug Des. 2017, 90, 443-449.
https://doi.org/10.1111/cbdd.12964

[5]. Canario, C.; Silvestre, S.; Falcao, A.; Alves, G. Curr. Med. Chem. 2018, 25, 660-686.

[6]. Huang, G.; Zhao, H. R.; Meng, Q. Q.; Zhang, Q. J.; Dong, J. Y.; Zhu, B. Q.; Li, S. S. Eur. J. Med. Chem. 2018, 143, 166-181.
https://doi.org/10.1016/j.ejmech.2017.11.031

[7]. Dai, H.; Chen, J.; Li, G.; Ge, S. S.; Shi, Y. J.; Fang, Y.; Ling, Y. Bioorg. Med. Chem. Letters 2017, 27, 950-953.
https://doi.org/10.1016/j.bmcl.2016.12.083

[8]. Zhao, S. Y.; Li, K.; Jin, Y.; Lin, J. Eur. J. Med. Chem. 2018, 144, 41-51.
https://doi.org/10.1016/j.ejmech.2017.12.016

[9]. Yadav, P.; Lal, K.; Rani, P.; Mor, S.; Kumar, A.; Kumar, A. Med. Chem. Res. 2017, 26, 1469-1480.
https://doi.org/10.1007/s00044-017-1845-6

[10]. Kozlowska, J.; Potaniec, B.; Zarowska, B.; Aniol, M. Molecules 2017, 22. Article Number: UNSP 1485

[11]. Mohassab, A. M.; Hassan, H. A.; Abdelhamid, D.; Abdel-Aziz, M.; Dalby, K. N.; Kaoud, T. S. Bioorg. Chem. 2017, 75, 242-259.
https://doi.org/10.1016/j.bioorg.2017.09.018

[12]. Lorke, D. E.; Kalasz, H.; Petroianu, G. A.; Tekes, K. Curr. Med. Chem. 2008, 15, 743-753.
https://doi.org/10.2174/092986708783955563

[13]. Voicu, V. A.; Bajgar, J.; Medvedovici, A.; Radulescu, F. S.; Miron, D. S.; S. J. Appl. Tox. 2010, 719-729.
https://doi.org/10.1002/jat.1561

[14]. Katalinic, M.; Zandona, A.; Ramic, A.; Zorbaz, T.; Primozic, I.; Kovarik, Z. Molecules 2017, 22, Article number 1234.
https://doi.org/10.3390/molecules22071234

[15]. Radic, Z.; Dale, T.; Kovarik, Z.; Berend, S.; Garcia, E.; Zhang, L.; Amitais, G.; Green, C.; Radi, B.; Duggan, B. M.; Ajami, D.; Rebek, J.; Taylor. P. Biochem. J. 2013, 450, 231-242.

[16]. Sorensen, M.; Neilson, E. H. J.; Moller, B. L. Mol. Plant 2018, 11, 95-117.
https://doi.org/10.1016/j.molp.2017.12.014

[17]. Bertalosi, V.; Gilli, V.; Acta Cryst. B 1982, 38, 502-511
https://doi.org/10.1107/S0567740882003288

[18]. Bruton, E. A.; Brammer, L.; Pigge, F. C.; Aakeroy, C. B.; Leinen, D. S. New J. Chem. 2003, 27, 1084-1491.
https://doi.org/10.1039/B301045G

[19]. Low, J. N.; Santos, L. M. N. B. F.; Lima, C. F. R. A. C.; Brandao, P.; Gomes, L. R. Eur. J. Chem. 2010, 1, 61-66.
https://doi.org/10.5155/eurjchem.1.2.61-66.76

[20]. Etter, M. C. Acc. Chem. Res. 1990, 23, 120-126.
https://doi.org/10.1021/ar00172a005

[21]. Desiraju, G. R. Angew. Chem. Int. Ed. 2007, 46, 8342–8356.
https://doi.org/10.1002/anie.200700534

[22]. Liu, Y.; Cai, B.; Li, Y.; Song, H.; Huang, R.; Wang, Q. J. Agr. Food Chem. 2007, 55, 3011-3017.
https://doi.org/10.1021/jf0636519

[23]. http://www.chemspider.com/Chemical-Structure.5268628.html, (Retrieved 01/01/2018)

[24]. http://www.chemspider.com/Chemical-Structure.15526334.html, (Retrieved 01/01/2018)

[25]. Gilman, H.; Wright, G. F. J. Am. Chem. Soc. 1930, 52, 2550-2554.
https://doi.org/10.1021/ja01369a061

[26]. CrysAlis PRO 1.171.39.9g: Rigaku Oxford Diffraction, 2015

[27]. CrysAlis PRO 1.171.39.30d, Rigaku Oxford Diffraction, 2017.

[28]. McArdle, P.; Gilligan, K.; Cunningham, D.; Dark, R.; Mahon, M. Cryst. Eng. Comm. 2004, 6, 203-209.
https://doi.org/10.1039/B407861F

[29]. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[30]. Hubschle, C. B.; Sheldrick, G. M.; Dittrich, B. J. Appl. Cryst. 2011, 44, 1281-1284.
https://doi.org/10.1107/S0021889811043202

[31]. Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[32]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Van de Streek, J.; Wood, P. A. (MERCURY, CCDC, 2018) J. Appl. Cryst. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[33]. Spek, A. L. Acta Cryst. D 2009, 55, 148-155.
https://doi.org/10.1107/S090744490804362X

[34]. McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S. Acta Cryst. B 2004, 60, 627-668.
https://doi.org/10.1107/S0108768104020300

[35]. Wolff, S.; Grimwood, D.; McKinnon, J.; Turner, M.; Jayatilaka, D.; Spackman, M., Crystal Explorer, University of Western Australia Perth, Australia, 2012.

[36]. Wagner, P.; Officer, D. L.; Kubicki, M. Acta Cryst. E 2006, 62, o5931-o5932.
https://doi.org/10.1107/S1600536806050100

[37]. Zhang, X.; Chen Z.; Li, J.; Lu, T. J. Chem. Inf. Model, 2015, 55, 2138-2153.
https://doi.org/10.1021/acs.jcim.5b00177

[38]. Howie, R. A.; Wardell, J. L. Acta Cryst. C 1995, 51, 2651-2652.
https://doi.org/10.1107/S0108270195009474

Supporting Agencies

Portuguese Foundation for Science and Technology (FCT) UID/Multi/04546/2013
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).