European Journal of Chemistry 2019, 10(1), 82-94 | doi: https://doi.org/10.5155/eurjchem.10.1.82-94.1809 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | REVIEW ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Band edge positions as a key parameter to a systematic design of heterogeneous photocatalyst


Eshraq Ahmed Abdullah (1,*) orcid

(1) Department of Chemistry, Faculty of Education, Taiz University, Taiz, 009674, Yemen
(*) Corresponding Author

Received: 15 Oct 2018 | Revised: 29 Nov 2018 | Accepted: 12 Dec 2018 | Published: 31 Mar 2019 | Issue Date: March 2019

Abstract


Although, plenty of photocatalytic approaches have been developed in the past few decades to overcome major drawbacks, such as; wide band gap and fast volume/surface recombination of the charge carriers, the researchers still need to carry out careful systematic studies before conducting experiments based on physicochemical properties of a system. Thus, in this review, a detailed discussion of the band edge positions controlling the migration and charge separation of the produced charged carriers and its impact onto the photocatalytic systems are provided. The knowledge of band edge positions is a crucial prerequisite to a rational design of an efficient photocatalytic system. The enhancement mechanism should match these criteria to be reliable in the field of heterogeneous photocatalysis science.


Keywords


Band gap; Photocatalysis; Band edge positions; Surface recombination; Charge carrier separation; Physicochemical properties

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.10.1.82-94.1809

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 898 times | icon graph PDF Article downloaded 313 times


Citations

/


[1]. Olalekan C. Olatunde, Damian C. Onwudiwe
A Comparative Study of the Effect of Graphene Oxide, Graphitic Carbon Nitride, and Their Composite on the Photocatalytic Activity of Cu3SnS4
Catalysts  12(1), 14, 2021
DOI: 10.3390/catal12010014
/


[2]. Jie Jiang, Guohong Wang, Yanchi Shao, Juan Wang, Shuang Zhou, Yaorong Su
Step-scheme ZnO@ZnS hollow microspheres for improved photocatalytic H2 production performance
Chinese Journal of Catalysis  43(2), 329, 2022
DOI: 10.1016/S1872-2067(21)63889-5
/


[3]. Jianhui Pan, Junhui Liang, Zhenxia Xu, Xin Yao, Jia Qiu, Huayu Chen, Laishun Qin, Da Chen, Yuexiang Huang
Rationally designed ternary CdSe/WS2/g-C3N4 hybrid photocatalysts with significantly enhanced hydrogen evolution activity and mechanism insight
International Journal of Hydrogen Energy  46(59), 30344, 2021
DOI: 10.1016/j.ijhydene.2021.06.165
/


[4]. Muktar Musa Ibrahim, Hamza Rabiu Sani, Khuzaifa Muhammad Yahuza, Aminu Hassan Yusuf, Ahmad Bello Bungudu
Response surface optimization and modeling of caffeine photocatalytic degradation using visible light responsive perovskite structured LaMnO3
European Journal of Chemistry  12(3), 289, 2021
DOI: 10.5155/eurjchem.12.3.289-298.2127
/


References


[1]. Guo, S.; Deng, Z.; Li, M.; Jiang, B.; Tian, C.; Pan, Q.; Fu, H. Angew. Chem. 2016, 128, 1862-1866.
https://doi.org/10.1002/ange.201508505

[2]. Wu, Z.; Yuan, X.; Zeng, G.; Jiang, L.; Zhong, H.; Xie, Y.; Wang, H.; Chen, X.; Wang, H. Appl. Catal. B: Environ. 2018, 225, 8-21.
https://doi.org/10.1016/j.apcatb.2017.11.040

[3]. Zhang, X.; Qin, J.; R.; Hao, Wang, L.; Shen, X.; Yu, R.; Limpanart, S.; Ma, M.; Liu, R. J. Phys. Chem. C 2015, 119, 20544-20554.
https://doi.org/10.1021/acs.jpcc.5b07116

[4]. Lee, J.; Shim, H. S.; Lee, M.; Song, J. K.; Lee, D. J. Phys. Chem. Lett. 2011, 2, 2840-2845.
https://doi.org/10.1021/jz2013352

[5]. Siuleiman, S.; Kaneva, N.; Bojinova, A.; Dimitrov, D.; Papazova, K. Bulg. Chem. Commun. 2017, 49, 199-204.

[6]. Liu, H.; Li, M.; Yang, J.; Hu, C.; Shang, J.; Zhai, H. Mater. Res. Bull. 2018, 106, 19-27.
https://doi.org/10.1016/j.materresbull.2018.05.026

[7]. Lou, Z. Z.; Kim, S.; Fujitsuka, M.; Yang, X.; Li, B. Adv. Funct. Mater. 2018, 28, 1706969.
https://doi.org/10.1002/adfm.201706969

[8]. Wang, J.; Tang, L.; Zeng, G.; Deng, Y.; Dong, H.; Liu, Y.; Wang, L.; Peng, B.; Zhang, C.; Chen, F. Appl. Cata. B-Environ. 2018, 222, 115-123.

[9]. Rajabi, H. R. Photocatalytic Activity of Quantum Dots, in: Semiconductor Photocatalysis-Materials, Mechanisms and Applications, InTechopen, 2016.
https://doi.org/10.5772/63435

[10]. Reiss, P.; Protiere, M.; Li, L. Small 2009, 5, 154-168.
https://doi.org/10.1002/smll.200800841

[11]. Shamsipur, M.; Rajabi, H. R.; Khani, O. Mater. Sci. Semicond. Process. 2013, 16, 1154-1161.
https://doi.org/10.1016/j.mssp.2013.02.010

[12]. Kandi, D.; Martha, S.; Parida, K. Int. J. Hydrogen Energy 2017, 42, 9467-9481.
https://doi.org/10.1016/j.ijhydene.2017.02.166

[13]. Lazar, M.; Varghese, S.; Nair, S. Catalysts 2012, 2, 572-601.
https://doi.org/10.3390/catal2040572

[14]. Atkins, P.; De Paula, J. Atkins' Physical Chemistry, 9th Edition, Oxford University Press, 2009.

[15]. Ren, X. F.; Zhang, J.; Kang, G. J. J. Nanomater. 2015, 2015, Article ID 605728, 9 pages.

[16]. Zhang, X.; Chen, Y. L.; Liu, R. -S.; Tsai, D. P. Rep. Prog. Phys. 2013, 76, 046401.
https://doi.org/10.1088/0034-4885/76/4/046401

[17]. Makama, A. B.; Umar, M.; Saidu, S. A. CQD-Based Composites as Visible-Light Active Photocatalysts for Purification of Water, InTechopen, 2018.
https://doi.org/10.5772/intechopen.74245

[18]. Linsebigler, A. L.; Lu, G.; Yates Jr, J. T. Chem. Rev. 1995, 95, 735-758.
https://doi.org/10.1021/cr00035a013

[19]. Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; S.; Li, Z.; Wang, J. Liu; Wang, X. Chem. Soc. Rev. 2014, 43, 5234-5244.
https://doi.org/10.1039/C4CS00126E

[20]. Magalhaes, P.; Andrade, L.; Nunes, O. C.; Mendes, A. Rev. Adv. Mater. Sci. 2017, 51, 91-129.

[21]. Zhang, J.; Wang, Y.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, ACS Appl. Mater. Interfaces 2013, 5, 10317-10324.
https://doi.org/10.1021/am403327g

[22]. Hosseinpour-Mashkani, S. M.; Maddahfar, M.; Sobhani-Nasab, A. J. Mater. Sci. Mater. Electron. 2016, 27, 474-480.
https://doi.org/10.1007/s10854-015-3776-7

[23]. Ma, D.; Shi, J. W.; Zou, Y.; Fan, Z.; Ji, X.; Niu C. ACS appl. Mater. Interfaces 2017, 9, 25377-25386.
https://doi.org/10.1021/acsami.7b08407

[24]. Ikram S. Arch. Med. 2016, 2, 1-10.

[25]. Maeda, K.; Domen, K. J. Phys. Chem. Lett. 2010, 1, 2655-2661.
https://doi.org/10.1021/jz1007966

[26]. Elaziouti, A.; Laouedj, N.; Bekka, A.; Vannier, R. N. J. King Saud. Univ. Sci. 2015, 27, 120-135.
https://doi.org/10.1016/j.jksus.2014.08.002

[27]. Beranek, R. Adv. Phys. Chem. 2011, 2011, 1-20.

[28]. Wang, Y.; Zhang, R.; Li, J.; Li, L.; Lin, S. Nanoscale Res. Lett. 2014, 9, 46, 1-8.

[29]. Huang, H.; Wang, S.; Zhang, Y.; Chu, P. K. Rsc. Adv. 2014, 4, 41219-41227.
https://doi.org/10.1039/C4RA05708B

[30]. Xu, Y.; Schoonen, M. A. Am. Mineral. 2000, 85, 543-556.
https://doi.org/10.2138/am-2000-0416

[31]. Li, L.; Liu, X.; Zhang, Y.; N. T.; Nuhfer, K.; Barmak, Salvador, P. A.; Rohrer, G. S. ACS Appl. Mater. Interfaces 2013, 5, 5064-5071.
https://doi.org/10.1021/am4008837

[32]. Liu, S.; Chen, J.; Xu, D.; Zhang, X.; Shen, M. J. Mater. Res. 2018, 33, 1391-1400.
https://doi.org/10.1557/jmr.2018.67

[33]. Chen, F.; Yang, Q.; Li, X.; Zeng, G.; Wang, D.; Niu, C.; Zhao, J.; An, H.; Xie, T.; Deng, Y. Appl. Catal. B. Environ. 2017, 200, 330-342.
https://doi.org/10.1016/j.apcatb.2016.07.021

[34]. Khanchandani, S.; Kundu, S.; Patra, A.; Ganguli, A. K. J. Phys. Chem. C 2013, 117, 5558-5567.
https://doi.org/10.1021/jp310495j

[35]. Marschall, R. Adv. Funct. Mater. 2014, 24, 2421-2440.
https://doi.org/10.1002/adfm.201303214

[36]. Jang, J. S.; Ahn, C. W.; Won, S. S.; Kim, J. H.; Choi, W.; Lee, B. S.; Yoon, J. H.; Kim, H. G.; Lee, J. S. J. Phys. Chem. C 2017, 121, 15063-15070.
https://doi.org/10.1021/acs.jpcc.7b03081

[37]. Zhang, Z.; Lin, S.; Li, X.; Li, H.; Zhang, T.; Cui, W. Nanomaterials 2018, 8, 330.
https://doi.org/10.3390/nano8050330

[38]. Ran, J.; Ma, T. Y.; Gao, G.; Du, X. W.; Qiao, S. Z. Energy Environ. Sci. 2015, 8, 3708-3717.
https://doi.org/10.1039/C5EE02650D

[39]. Guo, L.; Yang, Z.; Marcus, K.; Li, Z., Luo, B.; Zhou, L.; Wang, X.; Du, Y.; Yang, Y. Energy Environ. Sci. 2018, 11, 106-114.
https://doi.org/10.1039/C7EE02464A

[40]. Qiu, B.; Zhu, Q.; Du, M.; Fan, L.; M.; Xing, Z. J. Angew. Chem. 2017, 129, 2728-2732.
https://doi.org/10.1002/ange.201612551

[41]. Zhang, Z.; Jiang, D.; Li, D.; M.; He, Chen, M. Appl. Catal. B: Environ. 2016, 183, 113-123.
https://doi.org/10.1016/j.apcatb.2015.10.022

[42]. Zou, Y.; Shi, J. W.; Ma, D.; Fan, Z.; L.; Cheng, Sun, D.; Wang, Z.; Niu, C. Chem. Sus. Chem. 2018, 11, 1187-1197.
https://doi.org/10.1002/cssc.201800053

[43]. Ola, O.; Maroto-Valer, M. M. J. Photochem. Photobiol. C 2015, 24, 16-42.
https://doi.org/10.1016/j.jphotochemrev.2015.06.001

[44]. Huang, F.; Yan, A.; Zhao, H. Influences of doping on photocatalytic properties of TiO2 photocatalyst, in: Semiconductor Photocatalysis-Materials, Mechanisms and Applications, InTech, 2016.
https://doi.org/10.5772/63234

[45]. Wang, M.; Ye, M.; Iocozzia, J.; Lin, C.; Lin, Z. Adv. Sci. 2016, 3, 1600024.
https://doi.org/10.1002/advs.201600024

[46]. Tatsuma, T.; Nishi, H.; Ishida, T. Chem. Sci. 2017, 8, 3325-3337.
https://doi.org/10.1039/C7SC00031F

[47]. Islam, S. Z.; Nagpure, S.; Kim, D. Y.; Rankin, S. E. Inorganics 2017, 5, 15.
https://doi.org/10.3390/inorganics5010015

[48]. Teka, T. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2015, 3, 2347-4289.

[49]. Yu, W.; Zhang, J.; Peng, T. Appl. Catal. B: Environ. 2016, 181, 220-227.
https://doi.org/10.1016/j.apcatb.2015.07.031

[50]. Serpone, N. J. Phys. Chem. B 2006, 110, 24287-24293.
https://doi.org/10.1021/jp065659r

[51]. Park, H.; Park, Y.; Kim, W.; Choi, W. J. Photochem. Photobiol. C 2013, 15, 1-20.
https://doi.org/10.1016/j.jphotochemrev.2012.10.001

[52]. Dai, K.; Peng, T.; Ke, D.; Wei, B. Nanotechnology 2009, 20, 125603.
https://doi.org/10.1088/0957-4484/20/12/125603

[53]. Rawal, S. B.; Bera, S.; Lee, D.; Jang, D. J.; Lee, W. I. Catal. Sci. Technol. 2013, 3, 1822-1830.
https://doi.org/10.1039/c3cy00004d

[54]. Baransi, K.; Dubowski, Y.; Sabbah, I. Water Res. 2012, 46, 789-798.
https://doi.org/10.1016/j.watres.2011.11.049

[55]. Bouazza, N.; Ouzzine, M.; Lillo-Rodenas, M.; Eder, Linares-Solano, D.; A. Appl. Catal. B: Environ. 2009, 92, 377-383.
https://doi.org/10.1016/j.apcatb.2009.08.017

[56]. Jiang, D.; Irfan, R. M.; Sun, Z.; Lu, D.; Du, P. Chem. Sus. Chem. 2016, 9, 3084-3092.
https://doi.org/10.1002/cssc.201600871

[57]. Moniz, S. J.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. Energy Environ. Sci. 2015, 8, 731-759.
https://doi.org/10.1039/C4EE03271C

[58]. Paul, K.; Giri, P. Plasmonic Metal and Semiconductor Nanoparticle Decorated TiO2 -Based Photocatalysts for Solar Light Driven Photocatalysis, in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2017.

[59]. Qi, K.; Cheng, B.; Yu, J.; Ho, W. Chinese J. Catal. 2017, 38, 1936-1955.
https://doi.org/10.1016/S1872-2067(17)62962-0

[60]. Li, H.; Tu, W.; Zhou, Y.; Zou, Z. Adv. Sci. 2016, 3, 1500389.
https://doi.org/10.1002/advs.201500389

[61]. Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Wu, Z.; Wang, H. Environ. Sci. Nano 2018, 5, 599-615.
https://doi.org/10.1039/C7EN01031A

[62]. Xu, Z.; Kibria, M. G.; AlOtaibi, B.; Duchesne, P. N.; Besteiro, L. V.; Gao, Y.; Zhang, Q.; Mi, Z.; Zhang, P.; Govorov, A. O.; Mai, L.; Chaker, M.; Ma, D. Appl. Catal. B: Environ. 2018, 221, 77-85.
https://doi.org/10.1016/j.apcatb.2017.08.085

[63]. Lou, Z.; Zhu, M.; Yang, X.; Zhang, Y.; M. -H. Appl. Catal. B: Environ. 2018, 226, 10-15.
https://doi.org/10.1016/j.apcatb.2017.12.023

[64]. Fan, W.; Leung, M. K. H. Molecules 2016, 21, 180.
https://doi.org/10.3390/molecules21020180

[65]. Nguyen, B. H.; Nguyen, V. H. Adv. Nat. Sci-Nanosci. 2015, 6, 043001.

[66]. Xie, L.; Ai, Z.; Zhang, M.; Sun, R.; Zhao, W. PloS One 2016, 11, e0161397.
https://doi.org/10.1371/journal.pone.0161397

[67]. Khan, M. R.; Chuan, T. W.; Yousuf, A.; Chowdhury, M.; Cheng, C. K. Catal. Sci. Technol. 2015, 5, 2522-2531.
https://doi.org/10.1039/C4CY01545B

[68]. Erwin, W. R.; Zarick, H. F.; Talbert, E. M.; Bardhan, R. Energy Environ. Sci. 2016, 9, 1577-1601.
https://doi.org/10.1039/C5EE03847B

[69]. Colmenares, J. C.; . Luque, R; Campelo, J. M.; Colmenares, F.; Karpinski, Z.; Romero, A. A. Materials 2009, 2, 2228-2258.
https://doi.org/10.3390/ma2042228

[70]. Buzea, C.; Pacheco, I. I.; Robbie, K. Biointerphases 2007, 2, MR17-MR71.
https://doi.org/10.1116/1.2815690

[71]. Lin, H.; Huang, C.; Li, W.; Ni, C.; Shah, S. I.; Tseng, Y. -H. Appl. Catal. B: Environ. 2006, 68, 1-11.
https://doi.org/10.1016/j.apcatb.2006.07.018

[72]. Bera, D.; Qian, L.; Tseng, T. -K.; Holloway, P. H. Materials, 2010, 3, 2260-2345.
https://doi.org/10.3390/ma3042260

[73]. Rajabi, H. R.; Karimi, F.; Kazemdehdashti, H.; Kavoshi, L. J. Photochem. Photobiol. B, Biol. 2018, 181, 98-105.

[74]. Kundu, S.; Patra, A. Chem. Rev. 2016, 117, 712-757.
https://doi.org/10.1021/acs.chemrev.6b00036

[75]. Sarkar, S.; Sardar, S.; Makhal, A.; Dutta, J.; Pal, S. K. Engineering FRET-based solar cells: manipulation of energy and electron transfer processes in a light harvesting assembly, in: High-Efficiency Solar Cells, Springer, 2014.
https://doi.org/10.1007/978-3-319-01988-8_10

[76]. Wu, P.; Yan, X. P. Chem. Soc. Rev. 2013, 42, 5489-5521.
https://doi.org/10.1039/c3cs60017c

[77]. Li, J.; Cushing, S. K.; Meng, F.; Senty, T. R.; Bristow, A. D.; Wu, N. Nat. Photonics, 2015, 9(9), 601-607.
https://doi.org/10.1038/nphoton.2015.142

[78]. Chen, Y.; Lu, Q.; Yan, X.; Mo, Q.; Chen, Y.; Liu, B.; Teng, L.; Xiao, W.; Ge, L.; Wang, Q. Nanoscale Res. Lett. 2016, 11, 60.
https://doi.org/10.1186/s11671-016-1262-7


How to cite


Abdullah, E. Eur. J. Chem. 2019, 10(1), 82-94. doi:10.5155/eurjchem.10.1.82-94.1809
Abdullah, E. Band edge positions as a key parameter to a systematic design of heterogeneous photocatalyst. Eur. J. Chem. 2019, 10(1), 82-94. doi:10.5155/eurjchem.10.1.82-94.1809
Abdullah, E. (2019). Band edge positions as a key parameter to a systematic design of heterogeneous photocatalyst. European Journal of Chemistry, 10(1), 82-94. doi:10.5155/eurjchem.10.1.82-94.1809
Abdullah, Eshraq. "Band edge positions as a key parameter to a systematic design of heterogeneous photocatalyst." European Journal of Chemistry [Online], 10.1 (2019): 82-94. Web. 20 Jan. 2022
Abdullah, Eshraq. "Band edge positions as a key parameter to a systematic design of heterogeneous photocatalyst" European Journal of Chemistry [Online], Volume 10 Number 1 (31 March 2019)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.10.1.82-94.1809

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2019, 10(1), 82-94 | doi: https://doi.org/10.5155/eurjchem.10.1.82-94.1809 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.