European Journal of Chemistry

Structural and spectroscopic characterization and DFT studies of 2-amino-1,10-phenanthrolin-1-ium chloride

Crossmark


Main Article Content

Sebile Işık Büyükekşi
Namık Özdemir
Abdurrahman Şengül

Abstract

A versatile synthetic building block, 2-amino-1,10-phenanthrolin-1-ium chloride (L∙HCl) was synthesized and characterized by IR, 1H and 13C NMR DEPT analysis, UV/Vis and single-crystal X-ray diffraction technique. The molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO), 1H and 13C NMR chemical shifts values of the title compound in the ground state were obtained by using density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set and compared with the experimental data. Electronic absorption spectrum of the salt was determined using the time-dependent density functional theory (TD-DFT) method at the same level. In the NMR and electronic absorption spectra calculations, the effect of solvent on the theoretical parameters was included using the default model with DMSO as solvent. The obtained theoretical parameters agree well with the experimental findings.


icon graph This Abstract was viewed 1543 times | icon graph Article PDF downloaded 670 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Büyükekşi, S. I.; Özdemir, N.; Şengül, A. Structural and Spectroscopic Characterization and DFT Studies of 2-Amino-1,10-Phenanthrolin-1-Ium Chloride. Eur. J. Chem. 2019, 10, 95-101.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Guerfel, T.; Bdiri, M.; Jouini, A. J. Chem. Crystallogr. 2000, 30(12), 799-804.
https://doi.org/10.1023/A:1013228409413

[2]. Kanyo, Z. F.; Christianson, D. W. J. Biol. Chem. 1991, 266(7), 4264-4268.

[3]. Belarmino, M. K.; Cruz, V. F.; Lima, N. B. J. Mol. Model. 2014, 20, 2477, 1-7.
https://doi.org/10.1007/s00894-014-2477-0

[4]. Hammami, F.; Ghalla, H.; Nasr, S. Comput. Theor. Chem. 2015, 1070, 40-47.
https://doi.org/10.1016/j.comptc.2015.07.018

[5]. Lima, N. B.; Ramos, M. N. J. Mol. Struct. 2012, 1008, 29-34.
https://doi.org/10.1016/j.molstruc.2011.11.014

[6]. Abraham, R. J.; Mobli, M. Magn. Reson. Chem. 2007, 45(10), 865-877.
https://doi.org/10.1002/mrc.2060

[7]. Rusu, V. H.; da Silva, J. B. P.; Ramos, M. N. Vib. Spectrosc. 2008, 46(1), 52-56.
https://doi.org/10.1016/j.vibspec.2007.09.002

[8]. Lomas, J. S. Magn. Reson. Chem. 2014, 52(12), 745-754.
https://doi.org/10.1002/mrc.4130

[9]. Shan, N.; Batchelor, E.; Jones, W. Tetrahedron Lett. 2002, 43(48), 8721-8725.
https://doi.org/10.1016/S0040-4039(02)02140-8

[10]. Kao, H. C.; Hsu, C. J.; Hsu, C. W.; Lin, C. H.; Wang, W. J. Tetrahedron Lett. 2010, 51(29), 3743-3747.
https://doi.org/10.1016/j.tetlet.2010.05.039

[11]. Chen, Z. J.; Wang, L. M.; Zou, G.; Zhang, L.; Zhang, G. J.; Cai, X. F.; Teng, M. S. Dyes Pigments 2012, 94(3), 410-415.
https://doi.org/10.1016/j.dyepig.2012.01.024

[12]. Wang, W. J.; Sengul, A.; Luo, C. F.; Kao, H. C.; Cheng, Y. H. , Tetrahedron Lett. 2003, 44(37), 7099-7101.
https://doi.org/10.1016/S0040-4039(03)01710-6

[13]. Cheng, C. C.; Kuo, Y. N.; Chuang, K. S.; Luo, C. F.; Wang, W. J. Angew. Chem. Int. Ed. 1999, 38(9), 1255-1257.
https://doi.org/10.1002/(SICI)1521-3773(19990503)38:9<1255::AID-ANIE1255>3.0.CO;2-T

[14]. Davis, J. T. Angew. Chem. Int. Ed. 2004, 43(6), 668-698.
https://doi.org/10.1002/anie.200300589

[15]. Hirai, M.; Shinozuka, K.; Sawai, H.; Ogawa, S. Chem. Lett. 1992, 21(10), 2023-2026.
https://doi.org/10.1246/cl.1992.2023

[16]. Reed, J. E.; Neidle, S.; Vilar, R. Chem. Commun. 2007, 42, 4366-4368.
https://doi.org/10.1039/b709898g

[17]. Tan, J. H.; Gu, L. Q.; Wu, J. Y. Mini Rev. Med. Chem. 2008, 8(11), 1163-1178.
https://doi.org/10.2174/138955708785909880

[18]. Yıldız, U.; Sengul, A.; Kandemir, I.; Comert, F.; Akkoc, S.; Coban, B. Bioorg. Chem. 2019, 87, 70-77.
https://doi.org/10.1016/j.bioorg.2019.03.009

[19]. Polloni, L.; de Seni Silva, A. C.; Teixeira, S. C.; de Vasconcelos Azevedo, F. V. P.; Zoia, M. A. P.; da Silva, M. S.; Lima, P. M. A. P.; Correia, L. I. V.; do Couto Almeida, J.; da Silva, C. V. o, Biomed. Pharmacother. 2019, 112, 108586.
https://doi.org/10.1016/j.biopha.2019.01.047

[20]. Yu, B.; Rees, T. W.; Liang, J.; Jin, C.; Chen, Y.; Ji, L.; Chao, H. o, Dalton Trans. 2019, 48, 3914-3921.
https://doi.org/10.1039/C9DT00454H

[21]. Akerboom, S.; van den Elshout, J. J.; Mutikainen, I.; Siegler, M. A.; Fu, W. T.; Bouwman, E. Eur. J. Inorg. Chem. 2013, 36, 6137-6146.
https://doi.org/10.1002/ejic.201301000

[22]. Bezencon, J.; Wittwer, M. B.; Cutting, B.; Smiesko, M.; Wagner, B.; Kansy, M.; Ernst, B. J. Pharm. Biomed. Anal. 2014, 93, 147-155.
https://doi.org/10.1016/j.jpba.2013.12.014

[23]. Claus, K. G.; Rund, J. V. Inorg. Chem. 1969, 8(1), 59-63.
https://doi.org/10.1021/ic50071a014

[24]. Concepcion, J.; Just, O.; Leiva, A. M.; Loeb, B.; Rees, W. S. Inorg. Chem. 2002, 41(23), 5937-5939.
https://doi.org/10.1021/ic025719h

[25]. Corey, E.; Borror, A.; Foglia, T. J. Org. Chem. 1965, 30(1), 288-290.
https://doi.org/10.1021/jo01012a502

[26]. Engel, Y.; Dahan, A.; Rozenshine-Kemelmakher, E.; Gozin, M. J. Org. Chem. 2007, 72(7), 2318-2328.
https://doi.org/10.1021/jo062130h

[27]. Krapcho, A. P.; Sparapani, S.; Leenstra, A.; Seitz, J. D. Tetrahedron Lett. 2009, 50(26), 3195-3197.
https://doi.org/10.1016/j.tetlet.2009.01.138

[28]. Kumar, P.; Madyal, R. S.; Joshi, U.; Gaikar, V. G. Ind. Eng. Chem. Res. 2011, 50(13), 8195-8203.
https://doi.org/10.1021/ie101517j

[29]. Li, J.; Matsumoto, J.; Otabe, T.; Dohno, C.; Nakatani, K. Biorg. Med. Chem. 2015, 23(4), 753-758.
https://doi.org/10.1016/j.bmc.2014.12.062

[30]. Maqsood, S. R.; Islam, N.; Bashir, S.; Khan, B.; Pandith, A. H. J. Coord. Chem. 2013, 66(13), 2308-2315.
https://doi.org/10.1080/00958972.2013.800866

[31]. Hu, Z.; Miao, J.; Li, T.; Liu, M.; Murtaza, I.; Meng, H. Nano Energy 2018, 43, 72-80.
https://doi.org/10.1016/j.nanoen.2017.11.014

[32]. Zhang, H. R.; Jin, X. X.; Zhou, X.; Zhang, Y.; Leung, C. F.; Xiang, J. Cryst. Res. Technol. 2019, 54(1), 1800168.
https://doi.org/10.1002/crat.201800168

[33]. Buyukeksi, S. I.; Karatay, A.; Acar, N.; Kucukoz, B.; Elmali, A.; Sengul, A. Dalton Trans. 2018, 47(22), 7422-7430.
https://doi.org/10.1039/C8DT01135D

[34]. Buyukeksi, S. I.; Karatay, A.; Acar, N.; Kucukoz, B.; Elmali, A.; Sengul, A. J. Photochem. Photobiol. A: Chem. 2019, 372, 226-234.
https://doi.org/10.1016/j.jphotochem.2018.12.019

[35]. Buyukeksi, S. I.; Sengul, A.; Erdonmez, S.; Altindal, A.; Orman, E. B.; Ozkaya, A. R. Dalton Trans. 2018, 47(8), 2549-2560.
https://doi.org/10.1039/C7DT04713D

[36]. Zwart, M.; Bastiaans, H.; Van der Goot, H.; Timmerman, H. J. Med. Chem. 1991, 34(3), 1193-1201.
https://doi.org/10.1021/jm00107a045

[37]. Wang, W. J.; Chuang, K. S.; Luo, C. F.; Liu, H. Y. Tetrahedron Lett. 2000, 41(44), 8565-8568.
https://doi.org/10.1016/S0040-4039(00)01525-2

[38]. Fırıncı, R.; Gunay, M. E.; Ozdemir, N.; Dincer, M. J. Mol. Struct. 2017, 1146, 267-272.
https://doi.org/10.1016/j.molstruc.2017.06.012

[39]. Issa, T. B.; Ghalla, H.; Marzougui, S.; Benhamada, L. J. Mol. Struct. 2017, 1150, 127-134.
https://doi.org/10.1016/j.molstruc.2017.08.086

[40]. Ozdemir, N.; Kagit, R.; Dayan, O. Mol. Phys. 2016, 114(6), 757-768.
https://doi.org/10.1080/00268976.2015.1116715

[41]. Asath, R. M.; Rekha, T.; Premkumar, S.; Mathavan, T.; Benial, A. M. F. J. Mol. Struct. 2016, 1125, 633-642.
https://doi.org/10.1016/j.molstruc.2016.07.064

[42]. Bruker, APEX II, Bruker, Bruker AXS Inc. , Madison, Wisconsin, USA. 2014.

[43]. Bruker, SAINT, Bruker, Bruker AXS Inc. , Madison, Wisconsin, USA. 2013.

[44]. Bruker, SADABS, Bruker, Bruker AXS Inc. , Madison, Wisconsin, USA. 2014.

[45]. Sheldrick, G. M. Acta Crystallogr. Sect. A. Found. Adv. 2015, 71(1), 3-8.
https://doi.org/10.1107/S2053273314026370

[46]. Sheldrick, G. M. Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71(1), 3-8.
https://doi.org/10.1107/S2053229614024218

[47]. Farrugia, L. J. J. Appl. Crystallogr. 2012, 45(4), 849-854.
https://doi.org/10.1107/S0021889812029111

[48]. Spek, A. L. Acta Crystallogr. Sect. D 2009, 65(2), 148-155.
https://doi.org/10.1107/S090744490804362X

[49]. Becke, A. D. J. Chem. Phys. 1993, 98(7), 5648-5652.
https://doi.org/10.1063/1.464913

[50]. Lee, C.; Yang, W.; Parr, R. G. Phys. rev. B 1988, 37(2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[51]. Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54(2), 724-728.
https://doi.org/10.1063/1.1674902

[52]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. , J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc. , Wallingford CT, 2004. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Montgomery Jr, J.; Vreven, T.; Kudin, K.; Burant, J. Gaussian 03, Revision E. 01. 2004.

[53]. Dennington, R.; Keith, T.; Millam, J. G. Semichem Inc. 2007.

[54]. Andersson, M. P.; Uvdal, P. J. Phys. Chem. A 2005, 109(12), 2937-2941.
https://doi.org/10.1021/jp045733a

[55]. Ditchfield, R. J. Chem. Phys. 1972, 56(11), 5688-5691.
https://doi.org/10.1063/1.1677088

[56]. Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112(23), 8251-8260.
https://doi.org/10.1021/ja00179a005

[57]. Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108(11), 4439-4449.
https://doi.org/10.1063/1.475855

[58]. Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109(19), 8218-8224.
https://doi.org/10.1063/1.477483

[59]. Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107(8), 3032-3041.
https://doi.org/10.1063/1.474659

[60]. Harvey, M. A.; Baggio, S.; Garland, M. T.; Baggio, R. Acta Crystallogr. C 2008, 64(9), 0489-0492.

[61]. Hensen, K.; Spangenberg, B.; Bolte, M. Acta Crystallogr. C 2000, 56(2), 208-210.
https://doi.org/10.1107/S0108270199013815

[62]. Muthulakshmi, S.; Kalaivani, D. Acta Crystallogr. E 2015, 71(7), 783-785.
https://doi.org/10.1107/S2056989015010737

[63]. Macrae, C.; Bruno, I.; Chisholm, J.; Edgington, P.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. J. Appl. Crystallogr. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[64]. Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N. L. Angew. Chem. Int. Ed. Engl. 1995, 34(15), 1555-1573.
https://doi.org/10.1002/anie.199515551

[65]. Tanak, H.; Agar, A.; Yavuz, M. J. Mol. Model. 2010, 16(3), 577-587.
https://doi.org/10.1007/s00894-009-0574-2

[66]. Assefa, Z.; Gore, S. B. Bull. Chem. Soc. Ethiop. 2016, 30(2), 231-239.
https://doi.org/10.4314/bcse.v30i2.7

[67]. Günzler, H.; Gremlich, H. U. IR spectroscopy. An introduction. Wiley VCH: Weinheim, 2002.

[68]. Cruz, C.; Delgado, R.; Drew, M. G.; Felix, V. J. Org. Chem. 2007, 72(11), 4023-4034.
https://doi.org/10.1021/jo062653p

[69]. Park, C.; Simmons, H. J. Am. Chem. Soc. 1968, 90(9), 2431-2432.
https://doi.org/10.1021/ja01011a047

[70]. Koparir, P.; Sarac, K.; Orek, C.; Koparir, M. J. Mol. Struct. 2016, 1123, 407-415.
https://doi.org/10.1016/j.molstruc.2016.07.046

[71]. Pina, J.; Melo, J.; Pina, F.; Lodeiro, C.; Lima, J.; Parola, A. J.; Soriano, C.; Paz Clares, M.; Albelda, M. T.; Aucejo, R. , Inorg. Chem. 2005, 44, 7449-7458.
https://doi.org/10.1021/ic050733q

[72]. Jayabharathi, J.; Thanikachalam, V.; Perumal, M. V. Spectrochim. Acta A 2012, 95, 614-621.
https://doi.org/10.1016/j.saa.2012.04.059

[73]. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput. Chem. 2008, 29(5), 839-845.
https://doi.org/10.1002/jcc.20823

[74]. Callister, W. D.; Rethwisch, D. G. Materials science and engineering: an introduction. John Wiley & Sons New York: 2007; Vol. 7.

[75]. Issa, T. B.; Sayari, F.; Ghalla, H.; Benhamada, L. J. Mol. Struct. 2018, 1178, 436-449.
https://doi.org/10.1016/j.molstruc.2018.10.033

Supporting Agencies

Turkish Scientific and Technical Research Council (TÜBİTAK) [Grant number 214Z090].
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).