European Journal of Chemistry

Computational approach for predicting the adsorption properties and inhibition of some antiretroviral drugs on copper corrosion in HNO3

Crossmark


Main Article Content

Mougo André Tigori
Amadou Kouyaté
Victorien Kouakou
Paulin Marius Niamien
Albert Trokourey

Abstract

The use of computational chemistry as an effective means of designing eco-friendly organic corrosion inhibitors has been greatly enhanced by the development of Density Functional Theory (DFT). In this study, the inhibitory activity of four antiretroviral drugs, namely, lamivudine, emtricitabine, didanosine and stavudine, was analyzed by this theory. The quantum chemical parameters/descriptors calculated using DFT at B3LYP/6-31G(d) level were used to explain the mechanism of electron transfer between the inhibitors and the copper surface. The results showed that these compounds adsorb on copper surface. It is important to consider the effect of films formed by the adsorption products. In addition, the Fukui functions and the dual descriptor were used as indicators to locate the electrophilic and nucleophilic attack sites within each compound. Finally, the DFT has enabled to accurately predict the adsorption properties and the good inhibition performance of the molecules in the solution studied.


icon graph This Abstract was viewed 1307 times | icon graph Article PDF downloaded 609 times

How to Cite
(1)
Tigori, M. A.; Kouyaté, A.; Kouakou, V.; Niamien, P. M.; Trokourey, A. Computational Approach for Predicting the Adsorption Properties and Inhibition of Some Antiretroviral Drugs on Copper Corrosion in HNO3. Eur. J. Chem. 2020, 11, 235-244.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Ozcan, M.; Solmaz, R.; Kardas, G.; Dehri, I. Colloids Surf. A 2008, 325, 57-63.
https://doi.org/10.1016/j.colsurfa.2008.04.031

[2]. Scendo, M.; Hepel, M. J. Electroanal. Chem. 2008, 613, 35-50.
https://doi.org/10.1016/j.jelechem.2007.10.014

[3]. Laggoun, R.; Ferhat, M.; Saidat B.; Ali Benghia A.; Chaabani A. Corros. Sci. 2020, 165, 1-39.
https://doi.org/10.1016/j.corsci.2019.108363

[4]. Padash, R.; Sajadi, G. S.; Jafari, A. H.; Jamalizadeh, E.; Shokuhi, R. A. Mater. Chem. Phys. 2020, 244, 122681.
https://doi.org/10.1016/j.matchemphys.2020.122681

[5]. Deyab, M. A. J. Mol. Liq. 2020, 309, 113107.
https://doi.org/10.1016/j.molliq.2020.113107

[6]. Antonijevic, M. M.; Petrovic, M. B. Int. J. Electrochem. Sci. 2008, 3, 1-28.

[7]. Deyab, M. A. J. Ind. Eng. Chem. 2015, 25, 384-389.
https://doi.org/10.1016/j.jiec.2014.07.036

[8]. Pirvu, L.; Neagu, G.; Terchescu, I.; Albu, B.; Stefaniu, A. Open Chem. 2020, 18, 488-502.
https://doi.org/10.1515/chem-2020-0098

[9]. Shahraki, M.; Habibi-Khorassani, S. M.; Noroozifar, M.; Yavari, Z.; Darijani, M.; Dehdab, M. Iran. J. Mater. Sci. Eng. 2017, 14, 35-47.

[10]. Tamborim, S. M.; Dias, S. L. P.; Silva, S. N.; Dick, L. F. P.; Azambuja, D. S. Corros. Sci. 2011, 53, 1571-1580.
https://doi.org/10.1016/j.corsci.2011.01.034

[11]. Prabhu, R. A.; Shanbhag, A. V.; Venkatesha, T. V. J. Appl. Electrochem. 2007, 37, 491-497.
https://doi.org/10.1007/s10800-006-9280-2

[12]. Shylesha, B. S.; Venkatesha, T. V.; Praveen, B. M. J. Chem. Pharm. Res. 2011, 3, 501-507.

[13]. Abdallah, M.; Zaafarany, I.; Al-Karanee, S. O.; Abd El-Fattah, A. A. Arabian J. Chem. 2012, 5, 225-234.
https://doi.org/10.1016/j.arabjc.2010.08.017

[14]. Fouda, A. S.; El-Ewady, G. Y.; Shalabi, K. J. Korean Chem. Soc. 2011, 55, 268-278.
https://doi.org/10.5012/jkcs.2011.55.2.268

[15]. Ebenso, E. E.; Obot, I. B. Int. J. Electrochem. Sci. 2010, 5, 2012-2035.

[16]. Reza, I.; Saleemi, A. R.; S. Naveed, S. Polish J. Chem. Tech. 2011, 13, 67-71.
https://doi.org/10.2478/v10026-011-0014-9

[17]. Tigori, M. A.; Kouyate, A.; Assouma, D. C.; Kouakou, V.; Niamien, P. M. Am. J. Mater. Sci. Eng. 2020, 8, 6-16.

[18]. Abdallah, M.; azosulpha, R. Corros. Sci. 2002, 44, 717-728.
https://doi.org/10.1016/S0010-938X(01)00100-7

[19]. Ebenso, E. E.; Arslan, T.; Kandemirli, F.; Caner, N.; Love, I. Int. J. Quantum Chem. 2010, 110, 1003-1018.
https://doi.org/10.1002/qua.22249

[20]. Verma, C.; Haque, J.; Quraishi M. A.; Ebenso, E. E. J. Mol. Liq. 2019, 275, 18-40.
https://doi.org/10.1016/j.molliq.2018.11.040

[21]. Zulfareen, N.; Venugopal T.; Kannan. K. Int. J. Corros. 2018, 2018, 9372804, 1-18.
https://doi.org/10.1155/2018/9372804

[22]. Chauhan, D. S.; Ansari, K. R.; Sorour, A. A.; Quraishi, M. A.; Lgaz, H.; Salghi. R. Int. J. Biol. Macromol. 2018, 107, 1747-1757.
https://doi.org/10.1016/j.ijbiomac.2017.10.050

[23]. Azzaoui, K.; Mejdoubi, E.; Jodeh, S.; Lamhamdi, A.; Castellon, E. R.; Algarra, M.; Zarrouk, A.; Errich, A.; Salghi R.; Hassane L. G. Corros. Sci. 2017, 129, 70-81.
https://doi.org/10.1016/j.corsci.2017.09.027

[24]. Kayadibi, F.; Zor, S.; Sagdinc, S. G. Prot. Met. Phys. Chem. Surf. 2016, 52, 356-371.
https://doi.org/10.1134/S2070205116020131

[25]. Qiang Y.; Zhang, S.; Xu, S.; Li, W. J. Colloid Interface Sci. 2016, 472, 52-59.
https://doi.org/10.1016/j.jcis.2016.03.023

[26]. Fatima, S.; Sharma, R.; Asghar, F.; Kamal, A.; Badshah, A.; Kraatz. H. B. J. Ind. Eng. Chem. 2019, 76, 374-387.
https://doi.org/10.1016/j.jiec.2019.04.003

[27]. Ozturk, S. Prot. Met. Phys. Chem. Surf. 2018, 545, 953-962.
https://doi.org/10.1134/S2070205118050167

[28]. Zhang, D.; Gao, L.; Zhou, G. Corros. Sci. 2004, 46, 3031-3040.
https://doi.org/10.1016/j.corsci.2004.04.012

[29]. Padash, R.; Rahimi-Nasrabadi, M.; Shokuhi Rad, A. Appl. Phys. A. 2019, 125, 78, 1-11.
https://doi.org/10.1007/s00339-018-2376-9

[30]. Kumar, D.; Jain, Jain, N. V.; Rai, B. Appl. Surf. Sci. 2020, 514, 145905.
https://doi.org/10.1016/j.apsusc.2020.145905

[31]. Guo L.; Kaya, S.; Obot, I. B.; Zheng, X.; Qiang. Y. J. Colloid Interface Sci. 2017, 506, 478-485.
https://doi.org/10.1016/j.jcis.2017.07.082

[32]. Mo, S.; QunLuo, H.; Li, N. B. J. Colloid Interface Sci. 2017, 505, 929-939.
https://doi.org/10.1016/j.jcis.2017.06.075

[33]. Obot, I. B.; Macdonald, D. D.; Gasem, Z. M. Corros. Sci. 2015, 99, 1-30.
https://doi.org/10.1016/j.corsci.2015.01.037

[34]. Elmsellem, H.; Harit, T.; Aouniti, A.; Malek, F.; Riahi, A.; Chetouani, A.; Hammouti. B. Prot. Met. Phys. Chem. Surf. 2015, 51, 873-884.
https://doi.org/10.1134/S207020511505007X

[35]. Guo, L.; Dong, W.; Zhang, S. RSC Adv. 2014, 4, 41956-41967.
https://doi.org/10.1039/C4RA04931D

[36]. John, S.; Joy, J.; Prajila, M.; Joseph, A. Mater. Corros. 2011, 62, 1031-1041.

[37]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. , Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M. , Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, P. Salvador, G. A.; Dannenberg, S. Dapprich, J. J.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski J.; Fox, A. D. J. Gaussian 09. Gaussian, Inc., Wallingford, CT, 2009.

[38]. Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864-887.
https://doi.org/10.1103/PhysRev.136.B864

[39]. Lee, C.; Yang, W.; Parr. R. G. Phys. Rev. B 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[40]. Koopmans, T. Atoms. Physica. 1934, 1, 104-113.
https://doi.org/10.1016/S0031-8914(34)90011-2

[41]. Parr, R. G.; Szentpaly, L. V.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922-1924.
https://doi.org/10.1021/ja983494x

[42]. Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. 1986, 83, 8440-8441.
https://doi.org/10.1073/pnas.83.22.8440

[43]. Gazquez, J. L.; Cedillo, A.; Vela, A. J. Phys. Chem. A 2007, 111, 1966-1970.
https://doi.org/10.1021/jp065459f

[44]. Pearson, R. G. Inorg. Chem. 1988, 27, 734-740.
https://doi.org/10.1021/ic00277a030

[45]. Michaelson, H. B. J. Appl. Phys. 1977, 48, 4729-4733.
https://doi.org/10.1063/1.323539

[46]. Martinez-Araya, J. I. J. Math. Chem. 2015, 53, 451-465.
https://doi.org/10.1007/s10910-014-0437-7

[47]. Morell, C.; Grand, A.; Toro Labbe, A. J. Phys. Chem. A 2004, 109, 205-212.
https://doi.org/10.1021/jp046577a

[48]. Lebrini, M.; Traisnel, M.; Lagrenee, M.; Mernari, B.; Bentiss, F. Corros. Sci. 2008, 50, 473-479.
https://doi.org/10.1016/j.corsci.2007.05.031

[49]. Yurt, A.; Ulutas, S.; Dal, H. Appl. Surf. Sci. 2006, 253, 919-925.
https://doi.org/10.1016/j.apsusc.2006.01.026

[50]. Xiao-Ci, Y.; Hong, Z.; Ming-Dao, L.; Hong-Xuan, R.; Lu-An, Y. Corros. Sci. 2000, 42, 645-653.
https://doi.org/10.1016/S0010-938X(99)00091-8

[51]. Awad, M. K.; Mustafa, M. R.; Abo Elnga, M. M. J. Mol. Struct. Theochem. 2010, 959, 66-74.
https://doi.org/10.1016/j.theochem.2010.08.008

[52]. Fernandes, C. M.; Mello, M. V. P.; Santos, N. E. D.; Souza, A. M. T.; Lanznaster, M.; Ponzio, E. A. Mater. Corros. 2019, 71, 280-291.
https://doi.org/10.1002/maco.201911065

[53]. El Faydy, M.; Benhiba, F.; About, H.; Kerroum, Y.; Guenbour, A.; Lakhrissi, B.; Warad, I.; Verma, C.; El-Sayed M. S.; Ebenso, E. E.; Zarrouk, A. J. Colloid Interface Sci. 2020, 576, 330-344.
https://doi.org/10.1016/j.jcis.2020.05.010

[54]. Chakraborty, T.; Gazi, K.; Ghosh, D. C. Mol. Phys. 2010, 108, 2081-2092.
https://doi.org/10.1080/00268976.2010.505208

[55]. Quraishi, M.; Sardar, R. J. Appl. Electrochem. 2003, 33, 1163-1168.
https://doi.org/10.1023/B:JACH.0000003865.08986.fb

[56]. Pavithra, M. K.; Venkatesha, T. V.; Punith Kumar, M. K. Int. J. Electrochem. 2013, 2013, 1-9.
https://doi.org/10.1155/2013/714372

[57]. Obot, I. B.; Gasem, Z. M. Corros. Sci. 2014, 83, 359-366.
https://doi.org/10.1016/j.corsci.2014.03.008

[58]. Lukovits, I.; Kalman, E.; Zucchi, F. Corros. 2011, 57, 3-8.
https://doi.org/10.5006/1.3290328

[59]. Hegazy, M. A.; Atlam, F. M. J. Mol. Liq. 2016, 218, 649-662.
https://doi.org/10.1016/j.molliq.2016.03.008

[60]. Koch, E. C. Explos. Pyrotech. 2005, 30, 5-16.

[61]. Gomez, B.; Likhanova, N. V.; Dominguez-Aguilar, M. A.; Martinez-Palou, R.; Vela, A.; Gazquez, J. L. J. Phys. Chem. B 2006, 110, 8928-8934.
https://doi.org/10.1021/jp057143y

[62]. Obot, I. B.; Gasem, Z. M. Corros. Sci. 2014, 83, 359-366.
https://doi.org/10.1016/j.corsci.2014.03.008

[63]. El Faydy, M.; Benhiba, F.; About, H.; Kerroum, Y.; Guenbour, A.; Lakhrissi, B.; Warad, I.; Verma, C.; El-Sayed M. S.; Ebenso, E. E.; Zarrouk, A. J. Colloid Interface Sci. 2020, 576, 330-344.
https://doi.org/10.1016/j.jcis.2020.05.010

[64]. Obot, I. B.; Umoren, S. A.; Gasem, Z. M.; Suleiman, R.; El Ali, B. J. Ind. Eng. Chem. 2015, 21, 1328-1329.
https://doi.org/10.1016/j.jiec.2014.05.049

Supporting Agencies

Environmental Training and Research Unit of Jean Lorougnon Guédé University of Daloa, Côte d’Ivoire and The Laboratory of Physical Chemistry of Felix Houphouet Boigny University of Abidjan, Côte d’Ivoire.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).