European Journal of Chemistry

Study of expired Fuclo 500 drug as an environmentally sustainable corrosion inhibitor

Crossmark


Main Article Content

Aphouet Aurelie Koffi
N'guadi Blaise Allou
Mougo Andre Tigori
Teminfolo Yaya Soro
Albert Trokourey
Paulin Marius Niamien

Abstract

This work deals with aluminium corrosion inhibition by expired drugs containing flucloxacillin in 1 M hydrochloric acid medium, using the gravimetric method and density functional theory. Weight loss results showed that the inhibitory efficiency of this compound increases with concentration and decreases with increasing temperature. The study also indicates that this molecule is adsorbed according to the modified Langmuir model (Villamil model). Furthermore, the thermodynamic parameters of adsorption (∆Goads, ∆Hoads, ∆Soads) and activation (Ea*, ΔHa*, ΔSa*) show that the adsorption is mixed type (chemisorption and physisorption). In addition, density functional theory provides access to the quantum chemical parameters of the molecule such as the lowest vacant orbital energy (ELUMO), the highest occupied orbital energy (EHOMO), the absolute electronegativity (χ), the global hardness (η), the global softness (S), the fraction of transferred electrons (ΔN) as well as the electrophilicity index (ω) for finding correlation between the inhibitor structure and the experimental data.


icon graph This Abstract was viewed 376 times | icon graph Article PDF downloaded 201 times

How to Cite
(1)
Koffi, A. A.; Allou, N. B.; Tigori, M. A.; Soro, T. Y.; Trokourey, A.; Niamien, P. M. Study of Expired Fuclo 500 Drug As an Environmentally Sustainable Corrosion Inhibitor. Eur. J. Chem. 2023, 14, 353-361.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Functional materials: Preparation, processing and applications; Banerjee, S.; Tyagi, A. K., Eds.; Elsevier Science Publishing: Philadelphia, PA, 2011.

[2]. Kutz, M. Handbook of environmental degradation of materials; 2nd ed.; William Andrew Publishing: Norwich, CT, 2012.

[3]. Plieth, W. Electrochemistry for Materials Science; Elsevier Science: London, England, 2007.
https://doi.org/10.1016/B978-044452792-9.50014-2

[4]. Herrag, L.; Hammouti, B.; Elkadiri, S.; Aouniti, A.; Jama, C.; Vezin, H.; Bentiss, F. Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations. Corros. Sci. 2010, 52, 3042-3051.
https://doi.org/10.1016/j.corsci.2010.05.024

[5]. Chevalier, M.; Robert, F.; Amusant, N.; Traisnel, M.; Roos, C.; Lebrini, M. Enhanced corrosion resistance of mild steel in 1M hydrochloric acid solution by alkaloids extract from Aniba rosaeodora plant: Electrochemical, phytochemical and XPS studies. Electrochim. Acta 2014, 131, 96-105.
https://doi.org/10.1016/j.electacta.2013.12.023

[6]. Gece, G. Drugs: A review of promising novel corrosion inhibitors. Corros. Sci. 2011, 53, 3873-3898.
https://doi.org/10.1016/j.corsci.2011.08.006

[7]. Eddy, N. O.; Odoemelam, S. A. Inhibition of the corrosion of mild steel in acidic medium by penicillin V potassium. Advances in Natural and Applied Sciences 2008, 2, 225-232 http://www.aensiweb.com/old/anas/2008/225-232.pdf.

[8]. Eddy, N. O.; Odoemelam, S. A.; Ekwumemgbo, P. Inhibition of the corrosion of mild steel in HSO by penicillin G. Sci. Res. Essays 2009, 4, 33-38 https://academicjournals.org/article/article1380720172_Eddy%20et%20al%20Pdf.pdf.

[9]. Obot, I. B. Synergistic effect of nizoral and iodide ions on the corrosion inhibition of mild steel in sulphuric acid solution. Port. Electrochim. Acta 2009, 27, 539-553.
https://doi.org/10.4152/pea.200905539

[10]. Obot, I. B.; Obi-Egbedi, N. O. Inhibition of aluminium corrosion in hydrochloric acid using nizoral and the effect of iodide ion addition. E-J. Chem. 2010, 7, 837-843.
https://doi.org/10.1155/2010/345168

[11]. Prabhu, R. A.; Shanbhag, A. V.; Venkatesha, T. V. Influence of tramadol [2-[(dimethylamino)methyl]-1-(3-methoxyphenyl) cyclohexanol hydrate] on corrosion inhibition of mild steel in acidic media. J. Appl. Electrochem. 2007, 37, 491-497.
https://doi.org/10.1007/s10800-006-9280-2

[12]. Kesari, P.; Udayabhanu, G. Investigation of Vitamin B12 as a corrosion inhibitor for mild steel in HCl solution through gravimetric and electrochemical studies. Ain Shams Eng. J. 2023, 14, 101920.
https://doi.org/10.1016/j.asej.2022.101920

[13]. Solmaz, R. Investigation of corrosion inhibition mechanism and stability of Vitamin B1 on mild steel in 0.5M HCl solution. Corros. Sci. 2014, 81, 75-84.
https://doi.org/10.1016/j.corsci.2013.12.006

[14]. Alfakeer, M.; Chemistry Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia Corrosion inhibition effect of expired ampicillin and flucloxacillin drugs for mild steel in aqueous acidic medium. Int. J. Electrochem. Sci. 2020, 3283-3297.
https://doi.org/10.20964/2020.04.09

[15]. Hegazy, M. A.; Hasan, A. M.; Emara, M. M.; Bakr, M. F.; Youssef, A. H. Evaluating four synthesized Schiff bases as corrosion inhibitors on the carbon steel in 1 M hydrochloric acid. Corros. Sci. 2012, 65, 67-76.
https://doi.org/10.1016/j.corsci.2012.08.005

[16]. Nathan, C. C. Corrosion Inhibitors; National Association of Corrosion Engineers (NACE), Houston: Texas, USA, 1973.

[17]. Gece, G. The use of quantum chemical methods in corrosion inhibitor studies. Corros. Sci. 2008, 50, 2981-2992.
https://doi.org/10.1016/j.corsci.2008.08.043

[18]. El Adnani, Z.; Mcharfi, M.; Sfaira, M.; Benzakour, M.; Benjelloun, A. T.; Ebn Touhami, M. DFT theoretical study of 7-R-3methylquinoxalin-2(1H)-thiones (RH; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corros. Sci. 2013, 68, 223-230.
https://doi.org/10.1016/j.corsci.2012.11.020

[19]. El-Naggar, M. M. Corrosion inhibition of mild steel in acidic medium by some sulfa drugs compounds. Corros. Sci. 2007, 49, 2226-2236.
https://doi.org/10.1016/j.corsci.2006.10.039

[20]. Tüzün, B.; Bhawsar, J. Quantum chemical study of thiaozole derivatives as corrosion inhibitors based on density functional theory. Arab. J. Chem. 2021, 14, 102927.
https://doi.org/10.1016/j.arabjc.2020.102927

[21]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[22]. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200-206.
https://doi.org/10.1016/0009-2614(89)87234-3

[23]. Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements. J. Chem. Phys. 1988, 89, 2193-2218.
https://doi.org/10.1063/1.455064

[24]. Sellaoui, L.; Guedidi, H.; Knani, S.; Reinert, L.; Duclaux, L.; Ben Lamine, A. Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon. Fluid Phase Equilib. 2015, 387, 103-110.
https://doi.org/10.1016/j.fluid.2014.12.018

[25]. Hassan, H. H.; Abdelghani, E.; Amin, M. A. Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives. Electrochim. Acta 2007, 52, 6359-6366.
https://doi.org/10.1016/j.electacta.2007.04.046

[26]. Ramesh, S.; Rajeswari, S. Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatives. Electrochim. Acta 2004, 49, 811-820.
https://doi.org/10.1016/j.electacta.2003.09.035

[27]. Beda, R. H. B.; Niamien, P. M.; Avo Bilé, E. B.; Trokourey, A. Inhibition of aluminium corrosion in 1.0 M HCl by caffeine: Experimental and DFT studies. Adv. Chem. 2017, 2017, 1-10.
https://doi.org/10.1155/2017/6975248

[28]. Khamaysa, O. M. A.; Selatnia, I.; Zeghache, H.; Lgaz, H.; Sid, A.; Chung, I.-M.; Benahmed, M.; Gherraf, N.; Mosset, P. Enhanced corrosion inhibition of carbon steel in HCl solution by a newly synthesized hydrazone derivative: Mechanism exploration from electrochemical, XPS, and computational studies. J. Mol. Liq. 2020, 315, 113805.
https://doi.org/10.1016/j.molliq.2020.113805

[29]. Karthikaiselvi, R.; Subhashini, S. Study of adsorption properties and inhibition of mild steel corrosion in hydrochloric acid media by water soluble composite poly (vinyl alcohol-omethoxy aniline). J. Assoc. Arab Univ. Basic Appl. Sci. 2014, 16, 74-82.
https://doi.org/10.1016/j.jaubas.2013.06.002

[30]. Chen, Y.; Chen, Z.; Zhuo, Y. Newly synthesized morpholinyl Mannich bases as corrosion inhibitors for N80 steel in acid environment. Materials (Basel) 2022, 15, 4218.
https://doi.org/10.3390/ma15124218

[31]. Tan, C. H. C.; Sabar, S.; Hussin, M. H. Development of immobilized microcrystalline cellulose as an effective adsorbent for methylene blue dye removal. S. Afr. J. Chem. Eng. 2018, 26, 11-24.
https://doi.org/10.1016/j.sajce.2018.08.001

[32]. Akinbulumo, O. A.; Odejobi, O. J.; Odekanle, E. L. Thermodynamics and adsorption study of the corrosion inhibition of mild steel by Euphorbia heterophylla L. extract in 1.5 M HCl. Results in Materials 2020, 5, 100074.
https://doi.org/10.1016/j.rinma.2020.100074

[33]. Diki, N. Y. S.; Coulibaly, N. H.; Kassi, K. F.; Trokourey, A. Mild steel corrosion inhibition by synthesized 7-(Ethylthiobenzimidazolyl) Theophylline. J. Electrochem. Sci. Eng. 2021, 11, 97-106.
https://doi.org/10.5599/jese.952

[34]. Abdul Rahiman, A. F. S.; Sethumanickam, S. Corrosion inhibition, adsorption and thermodynamic properties of poly(vinyl alcohol-cysteine) in molar HCl. Arab. J. Chem. 2017, 10, S3358-S3366.
https://doi.org/10.1016/j.arabjc.2014.01.016

[35]. Abdelshafi, N. S.; Sadik, M. A.; Shoeib, M. A.; Halim, S. A. Corrosion inhibition of aluminum in 1 M HCl by novel pyrimidine derivatives, EFM measurements, DFT calculations and MD simulation. Arab. J. Chem. 2022, 15, 103459.
https://doi.org/10.1016/j.arabjc.2021.103459

[36]. Chen, L.; Lu, D.; Zhang, Y. Organic compounds as corrosion inhibitors for carbon steel in HCl solution: A comprehensive review. Materials (Basel) 2022, 15, 2023.
https://doi.org/10.3390/ma15062023

[37]. Merimi, I.; EL Ouadi, Y.; Benkaddour, R.; Lgaz, H.; Messali, M.; Jeffali, F.; Hammouti, B. Improving corrosion inhibition potentials using two triazole derivatives for mild steel in acidic medium: Experimental and theoretical studies. Mater. Today 2019, 13, 920-930.
https://doi.org/10.1016/j.matpr.2019.04.056

[38]. Khadom, A. A.; Abd, A. N.; Ahmed, N. A. Xanthium strumarium leaves extracts as a friendly corrosion inhibitor of low carbon steel in hydrochloric acid: Kinetics and mathematical studies. S. Afr. J. Chem. Eng. 2018, 25, 13-21.
https://doi.org/10.1016/j.sajce.2017.11.002

[39]. Ben Aoun, S. On the corrosion inhibition of carbon steel in 1 M HCl with a pyridinium-ionic liquid: chemical, thermodynamic, kinetic and electrochemical studies. RSC Adv. 2017, 7, 36688-36696.
https://doi.org/10.1039/C7RA04084A

[40]. Madkour, L. H.; Elshamy, I. H. Experimental and computational studies on the inhibition performances of benzimidazole and its derivatives for the corrosion of copper in nitric acid. Int. J. Ind. Chem. 2016, 7, 195-221.
https://doi.org/10.1007/s40090-015-0070-8

[41]. Diki, N. Y. S.; Coulibaly, N. H.; Kambiré, O.; Trokourey, A. Experimental and theoretical investigations on copper corrosion inhibition by cefixime drug in 1M HNO3 solution. J. Mater. Sci. Chem. Eng. 2021, 09, 11-28.
https://doi.org/10.4236/msce.2021.95002

[42]. Al-Amiery, A. A.; Mohamad, A. B.; Kadhum, A. A. H.; Shaker, L. M.; Isahak, W. N. R. W.; Takriff, M. S. Experimental and theoretical study on the corrosion inhibition of mild steel by nonanedioic acid derivative in hydrochloric acid solution. Sci. Rep. 2022, 12, 4705.
https://doi.org/10.1038/s41598-022-08146-8

[43]. Li, X.; Deng, S.; Fu, H. Triazolyl blue tetrazolium bromide as a novel corrosion inhibitor for steel in HCl and H2SO4 solutions. Corros. Sci. 2011, 53, 302-309.
https://doi.org/10.1016/j.corsci.2010.09.036

[44]. Faustin, M.; Maciuk, A.; Salvin, P.; Roos, C.; Lebrini, M. Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum laeve in 1M hydrochloric acid: Electrochemical and phytochemical studies. Corros. Sci. 2015, 92, 287-300.
https://doi.org/10.1016/j.corsci.2014.12.005

[45]. Deng, S.; Li, X. Inhibition by Jasminum nudiflorum Lindl. leaves extract of the corrosion of aluminium in HCl solution. Corros. Sci. 2012, 64, 253-262.
https://doi.org/10.1016/j.corsci.2012.07.017

Supporting Agencies

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).