European Journal of Chemistry

A highly sensitive and selective spectrofluorimetric method for the determination of molybdenum at pico-trace levels in various matrices using N-(pyridin-2-yl)-quinoline-2-carbothioamide

Crossmark


Main Article Content

Muhammad Jamaluddin Ahmed
Ayesha Afrin
Muhammad Emdadul Haque

Abstract

A new spectrofluorimetric reagent N-(pyridin-2-yl)-quinoline-2-carbothioamide (PQTA) has been synthesized and characterized. A very simple, ultra-sensitive, and highly selective, and non-extractive new spectrofluorimetric method for the determination of molybdenum at pico-trace levels using PQTA has been developed. This novel fluorimetric reagent PQTA, becomes oxidized in a slightly acidic (0.0025-0.05 M H2SO4) solution with molybdenum (VI) in absolute ethanol to produce a highly fluorescent oxidized product (λex = 300 nm; λem= 377 nm). Constant and maximum fluorescence intensities were observed over a wide range of acidity (0.0025-0.0500 M H2SO4) for the period between 2 min and 24 h. Linear calibration graphs were obtained for 0.001-600 μg/L of Mo having a detection limit of 0.15 ng/L; the quantification limit of the reaction system was found to be 1.5 ng/L and the RSD was 0-2%. A large excess of over 60 cations, anions, and complexing agents like chloride, phosphate, azide, tartrate, oxalate, and SCN- etc. do not interfere in the determination. The developed method was successfully used in the determination of molybdenum in several Certified Reference Materials (Alloys, steel, serum, bovine liver, drinking water, soil, and sediments) as well as in some environmental waters (Potable and polluted), biological fluids (Human blood, urine, hair, and milk), soil samples and food samples (Vegetables, rice, and wheat) solutions containing both molybdenum (VI) and molybdenum (V) ions. The results of the proposed method for assessing biological, food and vegetable samples were comparable with ICP-OES and AAS were found to be in excellent agreement.


icon graph This Abstract was viewed 1139 times | icon graph Article PDF downloaded 473 times

How to Cite
(1)
Ahmed, M. J.; Afrin, A.; Haque, M. E. A Highly Sensitive and Selective Spectrofluorimetric Method for the Determination of Molybdenum at Pico-Trace Levels in Various Matrices Using N-(pyridin-2-Yl)-Quinoline-2-Carbothioamide. Eur. J. Chem. 2021, 12, 1-12.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Hurliy, L. S.; Bratter, P.; Schramel, P. Trace Element Analytical Chemistry in Medicine and Biology, 6th edition, John Wiley & Sons, 1994.

[2]. Institute of Medicine, Molybdenum, In: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: The National Academies Press, 2000.

[3]. Coughlan, M. P. J. Inherit. Metab. Dis. 1983, 6 (S1), 70-77.
https://doi.org/10.1007/BF01811327

[4]. Burgmayer, S. J. N.; Stiefel, E. I. J. Chem. Educ. 1985, 62 (11), 943-953.
https://doi.org/10.1021/ed062p943

[5]. Considine, S.; Glenn, D., Molybdenum, Van Nostrand's Encyclopedia of Chemistry. New York, Wiley-Interscience, 2005.

[6]. Sebenik, R. F.; Burkin, A. R.; Dorfler, R. R.; Laferty, J. M.; Leichtfried, G.; Meyer-Grünow, H.; Mitchell, P. C. H.; Vukasovich, M. S.; Church, D. A.; Van Riper, G. G.; Gilliland, J. C.; Thielke, S. A. Molybdenum and Molybdenum Compounds. Ullmann's Encyclopedia of Industrial Chemistry, 2000.
https://doi.org/10.1002/14356007.a16_655

[7]. Lal, S.; Patil, R. S. Environ. Monit. Assess. 2001, 68 (1), 37-50.
https://doi.org/10.1023/A:1010730821844

[8]. Shpak, A. P.; Kotrechko, S. O.; Mazilova, T. I.; Mikhailovskij, I. M. Sci. Technol. Adv. Mater. 2009, 10 (4), 045004.
https://doi.org/10.1088/1468-6996/10/4/045004

[9]. Ahmed, M. J.; Haque, M. E. Anal. Sci. 2002, 18 (4), 433-439.
https://doi.org/10.2116/analsci.18.433

[10]. Sun, Y. Talanta 2000, 52 (3), 417-424.
https://doi.org/10.1016/S0039-9140(00)00391-X

[11]. Kalal, H. S.; Panahi, H. A.; Framarzi, N.; Moniri, E.; Naeemy, A.; Hoveidi, H.; Abhari, A. Int. J. Environ. Sci. Technol. 2011, 8 (3), 501-512.
https://doi.org/10.1007/BF03326236

[12]. Reid, H.; Bashammakh, A.; Goodall, P.; Landon, M.; Oconnor, C.; Sharp, B. Talanta 2007, 2008, 75 (1) 189-197.

[13]. Yu, J. C.; Chan, S. M.; Chen, Z. Anal. Bioanal. Chem. 2003, 376 (5), 728-734.

[14]. Gil, R. A.; Pasini-Cabello, S.; Takara, A.; Smichowski, P.; Olsina, R. A.; Martinez, L. D. Microchem. J. 2007, 86 (2), 156-160.
https://doi.org/10.1016/j.microc.2007.02.001

[15]. Burba, P.; Willmer, P. G. Z. Anal. Chem. 1986, 324 (3-4), 298-299.
https://doi.org/10.1007/BF00487941

[16]. Ohashi, H.; Uehara, N.; Shijo, Y. J. Chromatog. A 1991, 539 (1), 225-231.
https://doi.org/10.1016/S0021-9673(01)95379-8

[17]. Yigmatepe, E.; Yaman, M. Monatsh Chem. 2011, 142 (2), 131-136.
https://doi.org/10.1007/s00706-010-0442-x

[18]. Sanchez, M. Talanta 1991, 38 (7), 747-752.
https://doi.org/10.1016/0039-9140(91)80195-6

[19]. Jiang, C.; Wang, J.; He, F. Anal. Chim. Acta 2001, 439 (2), 307-313.
https://doi.org/10.1016/S0003-2670(01)00848-0

[20]. Capitan, F.; Sanchez-Palencia, G.; Navalon, A.; Fermin Capitan-Vallvey, L.; Luis Vilchez, J. Anal. Chim. Acta 1992, 259 (2), 345-353.
https://doi.org/10.1016/0003-2670(92)85386-K

[21]. Pyrzynska, K. Anal. Chim. Acta 2007, 590 (1), 40-48.
https://doi.org/10.1016/j.aca.2007.03.013

[22]. Cruces Blanco, C.; Garcia Campana, A.; Ales Barrero, F.; Roman Ceba, M. Anal. Chim. Acta 1993, 283 (1), 213-223.
https://doi.org/10.1016/0003-2670(93)85225-9

[23]. Bian, W. W. Appl. Mech. Mater. 2014, 556-562, 584-587.
https://doi.org/10.4028/www.scientific.net/AMM.556-562.584

[24]. Kawakubo, S.; Suzuki, H.; Iwatsuki, M. Anal. Sci. 1996, 12 (5), 767-771.
https://doi.org/10.2116/analsci.12.767

[25]. Vilchez, J. L.; Sanchez-Palencia, G.; Blanc, R.; Avidad, R.; Navalon, A. Anal. Lett. 1994, 27 (12), 2355-2368.
https://doi.org/10.1080/00032719408005988

[26]. Salinas, F.; de la Peña, A. M.; Capitan-Vallvey, L. F.; Navalon, A. Analyst 1989, 114 (10), 1297-1301.
https://doi.org/10.1039/AN9891401297

[27]. Haddad, P. R.; Alexander, P. W.; Smythe, L. E. Talanta 1975, 22 (1), 61-69.
https://doi.org/10.1016/0039-9140(75)80141-X

[28]. Jie, Z.; Sixuan, G.; Zaizheng, Z.; Bin, W.; Zhenghong, Z. Chinese J. Anal. Lab. 1998, 17 (1), 73-75.

[29]. Mori I.; Fujita Y.; Kamata Y.; Enoki T. Bunseki Kagaku 1978, 27 (5), 259-263.
https://doi.org/10.2116/bunsekikagaku.27.5_259

[30]. Xie, Y.; Yan, X.; Tong, H.; Liu, S. Asian J. Chem. 2007, 19 (2), 1017-1022.

[31]. Campana, A. M. G.; Barrero, F. A.; Ceba, M. R.; Gutierrez, A. F. Analyst 1994, 119 (8), 1903-1906.
https://doi.org/10.1039/AN9941901903

[32]. Blanco, C. Talanta 1995, 42 (8), 1037-1044.
https://doi.org/10.1016/0039-9140(95)01506-7

[33]. Chin, Y.-W.; Chai, H.-B.; Keller, W. J.; Kinghorn, A. D. J. Agric. Food Chem. 2008, 56 (17), 7759-7764.
https://doi.org/10.1021/jf801792n

[34]. Shaofei, S.; Ping, L.; Ful, Z. J. Hangzhou Normal Univ. Natural Sci. Edit. 2015, 2, 178-182.

[35]. Song, G, S.; Guo, Y.; Ren, H. Chinese J. Anal. Lab. 2005, 5, 44-47.

[36]. Tabaraki, R.; Abdi, O.; Yousefipour, S. J. Fluoresc. 2016, 27 (2), 651-657.
https://doi.org/10.1007/s10895-016-1994-x

[37]. Pal, B.; Singh, K.; Dutta, K. Talanta 1992, 39 (8), 971-975.
https://doi.org/10.1016/0039-9140(92)80280-Q

[38]. Feng, G.; Mi, H.; Fei, Q.; Shan, H.; Wang, B.; Xu, H.; Li, G.; Chen, F.; Huan, Y. Spectrochim. Acta A 2016, 167, 122-126.
https://doi.org/10.1016/j.saa.2016.05.039

[39]. Kirkbright, G. F.; West, T. S.; Woodward, C. Talanta 1966, 13 (12), 1637-1644.
https://doi.org/10.1016/0039-9140(66)80246-1

[40]. Guoquan, G.; Liufang, W.; Mingming, L. Chinese J. Anal. Chem. 1993, 21 (5), 563-565.

[41]. Wang, X.; Jiang, M.; Bai, Z.; Yan, F. Metallurg. Anal. (China) 1989, 9 (5), 27-29.

[42]. Bao, S. Y.; Li, S. C.; Wang, G. H.; Hu, H. F. J. Hebei Univ. (Natural Sci. Ed.) 2001, 21 (1), 61-64.

[43]. Maosheng, G.; Ji, L.; Jinduan, Z.; Zhongyi, Z.; Fupeng, W.; He, Y. Chinese J. Anal. Lab. 1990, 12 (5), 305-307.

[44]. Quanlin, Z.; Shaoyi, G. Chinese J. Spect. Lab. 1997, 14 (4), 88-93.

[45]. Hong-Yan, M. A.; Yun, W. Chinese J. Spect. Lab. 2000, 17 (1), 100-103.

[46]. Guien, Z.; Hong, C.; Suling, F. Chinese J. Anal. Lab. 1996, 24 (5), 539-542.

[47]. Guilan, S.; Yuting, L.; Zhe, X.; Xufeng, G.; Zengyu, Y. J. Shandong Inst. Build. Mater. 1997, 11 (4), 326-329.

[48]. Chongqiu, J.; Fengyan, Z. Chinese J. Anal. Lab. 1994, 22 (10), 1016-1018.

[49]. Hongyan, M. A.; Guang-Cai, Q. I. Metallurg. Anal. (China) 2001, 21 (4), 16-17.

[50]. Li-Hong, W.; Hui, Z.; Qiang, L.; Shu-Cun, L. Phys. Testing Chem. Anal. (Part B: Chem. Anal.) 2009, 9, 1072-1074.

[51]. Shan-Bao, Q.; Qing-Dong, W.; Chang-Mei, J. Phys. Testing Chem. Anal. (Part B: Chem. Anal.) 2009, 9, 1051-1055.

[52]. Xiao-Min, W.; Shen, C.; Jiao-Mai, P. Chem. J. Chinese Univ. 1991, 12 (9), 1181-1182.

[53]. Porter, H. D. J. Am. Chem. Soc. 1954, 76 (1), 127-128.
https://doi.org/10.1021/ja01630a035

[54]. Pal, B. K.; Chakrabarti, A. K.; Ahmed, Md. J. Anal. Chim. Acta 1988, 206, 351-355.
https://doi.org/10.1016/S0003-2670(00)80856-9

[55]. Ahmed, M. J.; Islam, M. T.; Hossain, F. RSC Adv. 2018, 8 (10), 5509-5522.
https://doi.org/10.1039/C7RA12762F

[56]. Ahmed, M. J.; Afrin, A.; Rashid, M. Am. J. Anal. Chem. 2019, 10 (08), 316-347.
https://doi.org/10.4236/ajac.2019.108023

[57]. Ahmed, M. J.; Islam, M. T.; Farhana, F. RSC Adv. 2019, 9 (44), 25609-25626.
https://doi.org/10.1039/C9RA02850A

[58]. Jeffery, G. H.; Bassett, J.; Mendham, J.; Denney, R. C., Vogel's Textbook of Quantitative Chemical Analysis, ELBS of 5th edition, John Wiley Sons Inc., 1989.

[59]. Parker, G. A. Analytical Chemistry of Molybdenum; Springer Berlin Heidelberg, 1983.
https://doi.org/10.1007/978-3-642-68992-5

[60]. Mukherji, A. K. Aqueous Solutions of Zirconium and Hafnium. In Analytical Chemistry of Zirconium and Hafnium; Elsevier, 1970; pp 1-11.
https://doi.org/10.1016/B978-0-08-006886-2.50006-0

[61]. Pal, B. K.; Choudhury, B. Mikrochim. Acta 1984, 83 (1-2), 121-131.
https://doi.org/10.1007/BF01237266

[62]. Ojeda, C. B.; de Torres, A. G.; Rojas, F. S.; Pavon, J. M. C. Analyst 1987, 112 (11), 1499-1501.
https://doi.org/10.1039/AN9871201499

[63]. Ahmed, M. J.; Afrin, A.; Akhtar, Y. Am. J. Anal. Chem. 2019, 10 (11), 528-561.
https://doi.org/10.4236/ajac.2019.1011038

[64]. Ahmed, M. J.; Stalikas, C. D.; Veltsistas, P. G.; Tzouwara-Karayanni, S. M.; Karayannis, M. I. Analyst 1997, 122 (3), 221-226.
https://doi.org/10.1039/a606357h

[65]. Pal, B. K.; Ahmed, Md. J. U.; Chakrabarti, A. K. Analyst 1990, 115 (4), 439-443.
https://doi.org/10.1039/AN9901500439

[66]. Sample Preparation Techniques in Analytical Chemistry; Mitra, S., Ed.; John Wiley & Sons, Inc., 2003.
https://doi.org/10.1002/0471457817.ch6

[67]. Sun, Y. C.; Yang, J. Y.; Tzeng, S. R. Analyst 1999, 124 (3), 421-424.
https://doi.org/10.1039/a809596e

[68]. Greenberg, E. A.; Clesceri, S. L.; Eaton, D. A., Standard Methods for the Examination of Water and Wastewater, 18th edition, American Public Health Association, Washington D. C., 1992.

[69]. Chambon, P.; Lound, U.; Ohanian, E. WHO Guidelines for Drinking Water Quality, Recommendations, 2nd edition, WHO, Geneva, 1993.

[70]. Ternero, M.; Gracia, I. Analyst 1983, 108 (1284), 310-315.
https://doi.org/10.1039/an9830800310

[71]. Stahr, H. M. Analytical Methods in Toxicology, 3rd edition, John Wiley and Sons, New York, 1991.

[72]. Jackson, M. L. Soil Chemical Analysis, Prentice Hall, Englewood Cliffs, 1965.

[73]. Tunceli, A.; Turker, R. Microchim. Acta 2004, 144 (1-3), 69-74.

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).