European Journal of Chemistry

Mechanistic insight into propane dehydrogenation into propylene over chromium (III) oxide by cluster approach and Density Functional Theory calculations

Crossmark


Main Article Content

Toyese Oyegoke
Fadimatu Nyako Dabai
Adamu Uzairu
Baba El-Yakubu Jibril

Abstract

A preliminary study to provides insight into the kinetic and thermodynamic assessment of the reaction mechanism involved in the non-oxidative dehydrogenation (NOD) of propane to propylene over Cr2O3, using a density functional theory (DFT) approach, has been undertaken. The result obtained from the study presents the number of steps involved in the reaction and their thermodynamic conditions across different routes. The rate-determining step (RDS) and a feasible reaction pathway to promote propylene production were also identified. The results obtained from the study of the 6-steps reaction mechanism for dehydrogenation of propane into propylene identified the first hydrogen abstraction and hydrogen desorption to be endothermic. In contrast, other steps that include propane’s adsorption, hydrogen diffusion, and the second stage of hydrogen abstraction were identified as exothermic. The study of different reaction routes presented in the energy profiles confirms the Cr-O (S1, that is, the reaction pathway that activates the propane across the Cr-O site at the alpha or the terminal carbon of the propane) pathway to be the thermodynamically feasible pathway for the production of propylene. The first hydrogen abstraction step was identified as the potential rate-determining step for defining the rate of the propane dehydrogenation process. This study also unveils that the significant participation of Cr sites in the propane dehydrogenation process and how the Cr high surface concentration would hinder the desorption of propylene and thereby promote the production of undesired products due to the stronger affinity that exists between the propylene and Cr-Cr site, which makes it more stable on the surface. These findings thereby result in Cr-site substitution suggestion to prevent deep dehydrogenation in propane conversion to propylene. This insight would aid in improving the catalyst performance.


icon graph This Abstract was viewed 1210 times | icon graph Article PDF downloaded 517 times

How to Cite
(1)
Oyegoke, T.; Dabai, F. N.; Uzairu, A.; Jibril, B. E.-Y. Mechanistic Insight into Propane Dehydrogenation into Propylene over Chromium (III) Oxide by Cluster Approach and Density Functional Theory Calculations. Eur. J. Chem. 2020, 11, 342-350.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Wittcoff, H. A.; Reuben, B. G.; Plotkin, J. S. Ind. Organic Chemicals, 2nd Edition, Wittcoff: Wiley Online Library, 2000.

[2]. Philip, J. C. Survey of Industrial Chemistry, Springer, US, 2001.

[3]. Budavari, S. Propylene - The Merck Index, Twelfth Edition ed., New Jersey: Merck & Co., 1996.

[4]. Ren, Y.; Zhang, F.; Hua, W.; Yue, Y.; Gao, Z. Catalysis Today 2009, 148(3-4), 316-322.
https://doi.org/10.1016/j.cattod.2009.05.011

[5]. Yan, L.; Li, Z. H.; Lu, J; Fan, K. N. J. Phys. Chem. C 2008, 112(51), 20382-20392.
https://doi.org/10.1021/jp807864z

[6]. Ming-Lei, Y.; Zhu, Y. A.; Zhou, X. G.; Sui, Z. J.; Chen, D. ACS Catalysis 2012, 2, 1247-1258.
https://doi.org/10.1021/cs300031d

[7]. Lauri, N.; Karoliina, H. ACS Catalysis 2013, 3, 3026-3030.
https://doi.org/10.1021/cs400566y

[8]. Timothy, H. Computational study of the catalytic dehydrogenation of propane on Pt and Pt3Ga catalyst, Published Thesis, Universiteit Gent, 2015, 168-169.

[9]. Stephanie, S.; Sabbe, M. K.; Galvita, V. V.; Redekop, E. A.; Reyniers, M. F.; Marin, G. B. ACS Catalysis. 2017, 7(11), 7495-7508.
https://doi.org/10.1021/acscatal.7b01584

[10]. Oyegoke, T.; Dabai, F. N.; Uzairu, A.; Jibril, B. Y. Bayero J. Pure App. Sci. 2018, 11(1), 178-184.
https://doi.org/10.4314/bajopas.v11i1.29S

[11]. Zhang, J.; Zhou, R. J.; Chang, Q. Y.; Sui, Z. J.; Zhou, X.-G.; Chen, D.; Zhu, Y. A. Catalysis Today 2020, in press, https://doi.org/10.1016/j.cattod.2020.02.023.
https://doi.org/10.1016/j.cattod.2020.02.023

[12]. Araujo-Lopez, E.; Joos, L.; Vandegehuchte, B. D.; Sharapa, D. I.; Studt, F. J. Phys. Chem. C 2020, 124(5), 3171-3176.
https://doi.org/10.1021/acs.jpcc.9b11424

[13]. Ningning, K.; Xing, F.; Fangfang, L.; Lu, W.; Haiping, L.; Youyong, L.; Shuit-Tong, L. ACS Nano 2020, 14(5), 5772-5779.
https://doi.org/10.1021/acsnano.0c00659

[14]. Keith, S.; Ka, W. C.; Jorge, A. M. B.; Dmitry, Z.; Olga, S.; Christophe, C. J. Am. Chem. Soc. 2018, 140(37), 11674-11679.
https://doi.org/10.1021/jacs.8b05378

[15]. Xie, Y.; Luo, R.; Sun, G.; Chen, S.; Zhao, Z. J.; Mu, R. RSC Chem. Sci. 2020, 11, 3845-3851.
https://doi.org/10.1039/D0SC00690D

[16]. Warren, J. H. A guide to molecular mechanics & quantum chemical calculations, Vol. 2, Irvine, CA: Wavefunction., 2003.

[17]. Oyegoke, T.; Dabai, F. N.; Uzairu, A.; Jibril, B. Y. J. Serbian Chem. Soc. 2020, 85(10), 1-14, https://doi.org/10.2298/JSC200521044O.
https://doi.org/10.2298/JSC200521044O

[18]. Brown, P.; Forsyth, J.; Lelievre-Berna E.; Tasset, F. J. Phys. Condens. Matter. 2002, 14, 1957-1966.
https://doi.org/10.1088/0953-8984/14/8/323

[19]. Wang, Y.; Gong, X.; Wang, J. Phys. Chem. Chem. Phys. 2010, 12(10), 2471-2477.
https://doi.org/10.1039/b920033a

[20]. Compere, C.; Costa, D.; Jolly, L.; Mauger, E.; Giessner-Prettre, C. New J. Chem. 2000, 24(12), 993-998.
https://doi.org/10.1039/b005313i

[21]. Veliah, S.; Xiang, K.; Pandey, R.; Recio J.; Newsam, J. J. Phys. Chem. B 1997, 102, 1126-1135.
https://doi.org/10.1021/jp972546m

[22]. Nguyen, N. H.; Ngo, D. H.; Le, M. C. J. Mol. Model 2013, 19, 3233-3243.
https://doi.org/10.1007/s00894-013-1853-5

[23]. Arjunan, V.; Rani, T.; Mythili, C.; Mohan, S. Eur. J. Chem. 2011, 2(1), 70-76.
https://doi.org/10.5155/eurjchem.2.1.70-76.286

[24]. Panicker, C.; Varghese, H.; George, A.; Thomas, P. Eur. J. Chem. 2010, 1(3), 173-178.
https://doi.org/10.5155/eurjchem.1.3.173-178.42

[25]. Laurendeau, N. M. Statistical Thermo.: Fundamentals & Applications, Cambridge, Cambridge Univ. Press, 2005.
https://doi.org/10.1017/CBO9780511815928

[26]. Kennedy, I.; Geering, H.; Rose, M.; Crossan, A. Entropy 2019, 21(5), 454, 1-24.
https://doi.org/10.3390/e21050454

[27]. Hill, T. L. An Introduction to Statistical Thermodynamics, New York: Dover Publications Inc., 1960.

[28]. Campbell, C. T.; Sprowl, L. H.; Arnadottir, L. J. Phys. Chem. C 2016, 120(19), 10283-10297.
https://doi.org/10.1021/acs.jpcc.6b00975

[29]. Savara, A. J. Phys. Chem. C 2013, 117(30), 15710-15715.
https://doi.org/10.1021/jp404398z

[30]. Sprowl, L. H.; Campbell, C. T.; Arnadottir, L. J. Phys. Chem. C 2017, 121(17), 9655-9655.
https://doi.org/10.1021/acs.jpcc.7b03318

[31]. Sprowl, L. H.; Campbell, C. T.; Arnadottir L. J. Phys. Chem. C 2016, 120(18), 9719-9731.
https://doi.org/10.1021/acs.jpcc.5b11616

[32]. Bio-Rad, SpectraBase BIO-RAD, John Wiley & Son Inc., Wiley SpectraBase; SpectraBase Compound ID=4AmhtLT3JGD SpectraBase Spectrum ID=K4fPRHBxDI3 http://spectrabase.com/spectrum/K4fPRHBxDI3 (accessed Sep 29, 2020).

[33]. Peter, A.; Paula, J. D.; Keeler, J. Physical Chemistry, Oxford, Oxford University Press, 2018.

[34]. Houston, P. L. Chemical Kinetics & Reaction Dynamics, New York, Dover Publisher Inc, 2001.

[35]. Jibril, B. Y. Appl. Cat. A: Gen. 2004, 264, 193-202.
https://doi.org/10.1016/j.apcata.2003.12.054

[36]. Zhao, Z. J.; Wu, T.; Xiong, C.; Sun, G.; Mu, R.; Zeng, L.; Gong, J. Angw. Chem. Intl. Ed. 2018, 57(23), 6791-6795.
https://doi.org/10.1002/anie.201800123

[37]. Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Chem. Rev. 2014, 114(20), 10613-10653.
https://doi.org/10.1021/cr5002436

[38]. Si, C.; Lian, Z.; Olanrele, S. O.; Sun, X.; Li, B. Appl. Surf. Sci. 2020, 519, 146241.
https://doi.org/10.1016/j.apsusc.2020.146241

[39]. Adam, W.; Jarczewski, S.; Wegrzynowicz, A.; Michorczyk, B.; Michorczyk, P. Nanomaterials 2017, 7(249), 7-8.
https://doi.org/10.3390/nano7090249

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).