European Journal of Chemistry

Synthesis, crystal structure with free radical scavenging activity and theoretical studies of Schiff bases derived from 1-naphthylamine, 2,6-diisopropylaniline, and substituted benzaldehyde

Crossmark


Main Article Content

Segun Daniel Oladipo
Tunde Lewis Yusuf
Sizwe Joshua Zamisa
Gideon Femi Tolufashe
Kolawole Ayodapo Olofinsan
Zikhona Tywabi-Ngeva
Nonhlangabezo Mabuba

Abstract

Three Schiff bases 1-(4-chlorophenyl)-N-(naphthalen-1-yl)methanimine (1), 1-(4-methoxy phenyl)-N-(naphthalen-1-yl)methanimine (2), and 1-(4-chlorophenyl)-N-(2,6-diisopropyl phenyl)methanimine (3) were synthesized and characterized by elemental analysis, 1H and 13C NMR, FT-IR and UV-Visible spectroscopic techniques. The crystal structure of compound 3 was obtained and it revealed that the compound crystallized in a monoclinic space group P21/n and there exists an intermolecular hydrogen bond in a phenyl-imine form with C-H⋯N. Crystal data for C19H22ClN: a = 7.28280(10) Å, b = 9.94270(10) Å, c = 24.0413(2) Å, β = 97.0120(10)°, = 1727.83(3) Å3, Z = 4, μ(Mo Kα) = 0.215 mm-1, Dcalc = 1.1526 g/cm3, 14038 reflections measured (12.42° ≤ 2Θ ≤ 52.74°), 3448 unique (Rint = 0.0223, Rsigma = 0.0182) which were used in all calculations. The final R1 was 0.0337 (I≥2u(I)) and wR2 was 0.0927 (all data). The free radical scavenging activities of all three compounds were assayed using DPPH, FRAP, and OH assays. According to results obtained, compound 2 shows effective DPPH- (IC50 = 22.69±0.14 μg/mL), FRAP+ (IC50 = 28.44±0.12 μg/mL), and OH- (IC50 = 27.97±0.16 μg/mL) scavenging activities compared with compounds 1 and 3 but less than standard antioxidant compound Trolox (TRO). Additionally, theoretical calculations for the three complexes were performed by using density functional theory (DFT) calculations at the B3LYP/6-31++G(2d,2p) level in the ground state to obtain an optimized geometrical structure and to perform an electronic, molecular electronic potential surface and natural bond orbital (NBO) analysis. The geometrical calculation obtained was found to be consistent with the experimental geometry. Further analysis was conducted using the in silico technique to predict the drug likeness, molecular and ADME properties of these molecules.


icon graph This Abstract was viewed 1905 times | icon graph Article PDF downloaded 777 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Oladipo, S. D.; Yusuf, T. L.; Zamisa, S. J.; Tolufashe, G. F.; Olofinsan, K. A.; Tywabi-Ngeva, Z.; Mabuba, N. Synthesis, Crystal Structure With Free Radical Scavenging Activity and Theoretical Studies of Schiff Bases Derived from 1-Naphthylamine, 2,6-Diisopropylaniline, and Substituted Benzaldehyde. Eur. J. Chem. 2021, 12, 204-215.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Kerr, M. E.; Bender, C. M.; Monti, E. J. Heart Lung 1996, 25 (3), 200-209.
https://doi.org/10.1016/S0147-9563(96)80030-6

[2]. Oladipo, S. D.; Omondi, B.; Mocktar, C. Polyhedron 2019, 170, 712-722.
https://doi.org/10.1016/j.poly.2019.06.038

[3]. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J. Int. J. Biochem. Cell Biol. 2007, 39 (1), 44-84.
https://doi.org/10.1016/j.biocel.2006.07.001

[4]. Hertog, M. G.; Feskens, E. J.; Hollman, P. C.; Katan, M. B.; Kromhout, D. Lancet 1993, 342 (8878), 1007-1011.
https://doi.org/10.1016/0140-6736(93)92876-U

[5]. Aziz, A. N.; Taha, M.; Ismail, N. H.; Anouar, E. H.; Yousuf, S.; Jamil, W.; Awang, K.; Ahmat, N.; Khan, K. M.; Kashif, S. M. Molecules 2014, 19 (6), 8414-8433.
https://doi.org/10.3390/molecules19068414

[6]. Kostova, I.; Saso, L. Curr. Med. Chem. 2013, 20 (36), 4609-4632.
https://doi.org/10.2174/09298673113209990149

[7]. Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: London, England, 2015.
https://doi.org/10.1093/acprof:oso/9780198717478.001.0001

[8]. Oladipo, S. D.; Omondi, B.; Mocktar, C. Appl. Organomet. Chem. 2020, 34 (5), e5610.
https://doi.org/10.1002/aoc.5610

[9]. Riley, P. A. Int. J. Radiat. Biol. 1994, 65 (1), 27-33.
https://doi.org/10.1080/09553009414550041

[10]. Valko, M.; Rhodes, C. J.; Moncol, J.; Izakovic, M.; Mazur, M. Chem. Biol. Interact. 2006, 160 (1), 1-40.
https://doi.org/10.1016/j.cbi.2005.12.009

[11]. Gacche, R. N.; Gond, D. S.; Dhole, N. A.; Dawane, B. S. J. Enzyme Inhib. Med. Chem. 2006, 21 (2), 157-161.
https://doi.org/10.1080/14756360500532671

[12]. Khan, K. M.; Khan, M.; Ambreen, N.; Rahim, F.; Muhammad, B.; Ali, S.; Haider, S. M.; Perveen, S.; Choudhary, M. J. Pharm. Res 2011, 4 (10), 3402-3404.

[13]. Yusuf, T. L.; Oladipo, S. D.; Olagboye, S. A.; Zamisa, S. J.; Tolufashe, G. F. J. Mol. Struct. 2020, 1222 (128857), 128857.
https://doi.org/10.1016/j.molstruc.2020.128857

[14]. Mohapatra, R. K.; Das, P. K.; Pradhan, M. K.; Maihub, A. A.; El-ajaily, M. M. J. Iran. Chem. Soc. 2018, 15 (10), 2193-2227.
https://doi.org/10.1007/s13738-018-1411-2

[15]. Khan, K. M.; Khan, M.; Ali, M.; Taha, M.; Rasheed, S.; Perveen, S.; Choudhary, M. I. Bioorg. Med. Chem. 2009, 17 (22), 7795-7801.
https://doi.org/10.1016/j.bmc.2009.09.028

[16]. Khan, K. M.; Rahim, F.; Ambreen, N.; Taha, M.; Khan, M.; Jahan, H.; Najeebullah; Shaikh, A.; Iqbal, S.; Perveen, S.; Choudhary, M. I. Med. Chem. 2013, 9 (4), 588-595.
https://doi.org/10.2174/1573406411309040013

[17]. Sundriyal, S.; Sharma, R. K.; Jain, R. Curr. Med. Chem. 2006, 13 (11), 1321-1335.
https://doi.org/10.2174/092986706776873023

[18]. Shukla, S.; Srivastava, R. S.; Shrivastava, S. K.; Sodhi, A.; Kumar, P. Med. Chem. Res. 2013, 22 (4), 1604-1617.
https://doi.org/10.1007/s00044-012-0150-7

[19]. Mishra, P.; Gupta, P.; Shakya, A. K.; Shukla, R.; Srimal, R. Indian J. Physiol. Pharmacol. 1995, 39 (1), 169-172.

[20]. Jain, J.; Srivastava, R.; Aggarwal, N.; Sinha, R. Cent. Nerv. Syst. Agents Med. Chem. 2007, 7 (3), 200-204.
https://doi.org/10.2174/187152407781669143

[21]. Shetty, P. Chem. Eng. Commun. 2020, 207 (7), 985-1029.
https://doi.org/10.1080/00986445.2019.1630387

[22]. Olagboye, S. A.; Yusuf, T. L.; Oladipo, S. D.; Zamisa, S. J. Z. Krist. - New Cryst. Struct. 2020, 235 (3), 689-692.
https://doi.org/10.1515/ncrs-2019-0900

[23]. Berhanu, A. L.; Gaurav; Mohiuddin, I.; Malik, A. K.; Aulakh, J. S.; Kumar, V.; Kim, K.-H. Trends Analyt. Chem. 2019, 116, 74-91.
https://doi.org/10.1016/j.trac.2019.04.025

[24]. Olagboye, S. A.; Yusuf, T. L.; Oladipo, S. D.; Zamisa, S. J. Z. Krist. - New Cryst. Struct. 2020, 235 (4), 833-836.
https://doi.org/10.1515/ncrs-2020-0034

[25]. Hine, J.; Yeh, C. Y. J. Am. Chem. Soc. 1967, 89 (11), 2669-2676.
https://doi.org/10.1021/ja00987a030

[26]. Mermer, A.; Demirbas, N.; Uslu, H.; Demirbas, A.; Ceylan, S.; Sirin, Y. J. Mol. Struct. 2019, 1181, 412-422.
https://doi.org/10.1016/j.molstruc.2018.12.114

[27]. Bakır, T. K.; Lawag, J. B. Res. Chem. Intermed. 2020, 46 (5), 2541-2557.
https://doi.org/10.1007/s11164-020-04105-y

[28]. APEX2 Bruker, Bruker AXS Inc., Wisconsin, Madison, USA, 2004.

[29]. SAINT-Plus, Bruker AXS Inc., Wisconsin, Madison, USA, 2004.

[30]. SADABS, Bruker AXS Inc., Wisconsin, Madison, USA, 2004.

[31]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64 (1), 112-122.
https://doi.org/10.1107/S0108767307043930

[32]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Crystallogr. 2008, 41 (2), 466-470.
https://doi.org/10.1107/S0021889807067908

[33]. Becke, A. D. Phys. Rev. A Gen. Phys. 1988, 38 (6), 3098-3100.
https://doi.org/10.1103/PhysRevA.38.3098

[34]. Long, F.; Zhang, X.; Cao, X.; Zhai, Q.; Song, Y.; Wang, F.; Jiang, J.; Xu, J. Fuel Process. Technol. 2020, 200 (106312), 106312.
https://doi.org/10.1016/j.fuproc.2019.106312

[35]. Buehl, M.; Thiel, W.; Fleischer, U.; Kutzelnigg, W. J. Phys. Chem. 1995, 99 (12), 4000-4007.
https://doi.org/10.1021/j100012a021

[36]. Fabian, J. Dyes Pigm. 2010, 84 (1), 36-53.
https://doi.org/10.1016/j.dyepig.2009.06.008

[37]. Turkoglu, A.; Duru, M. E.; Mercan, N.; Kivrak, I.; Gezer, K. Food Chem. 2007, 101 (1), 267-273.
https://doi.org/10.1016/j.foodchem.2006.01.025

[38]. Oyaizu, M. Jpn. J. Nutr. Diet. 1986, 44 (6), 307-315.
https://doi.org/10.5264/eiyogakuzashi.44.307

[39]. Smirnoff, N.; Cumbes, Q. J. Phytochemistry 1989, 28 (4), 1057-1060.
https://doi.org/10.1016/0031-9422(89)80182-7

[40]. Elemike, E. E.; Nwankwo, H. U.; Onwudiwe, D. C. J. Mol. Struct. 2018, 1155, 123-132.
https://doi.org/10.1016/j.molstruc.2017.10.102

[41]. Elemike, E. E.; Onwudiwe, D. C.; Nwankwo, H. U.; Hosten, E. C. J. Mol. Struct. 2017, 1136, 253-262.
https://doi.org/10.1016/j.molstruc.2017.01.085

[42]. Al Zoubi, W.; Al-Hamdani, A. A. S.; Ahmed, S. D.; Ko, Y. G. J. Phys. Org. Chem. 2018, 31 (2), e3752.
https://doi.org/10.1002/poc.3752

[43]. Arifuzzaman, M.; Karim, M. R.; Siddiquee, T. A.; Mirza, A. H.; Ali, M. A. Int. J. Org. Chem. (Irvine) 2013, 03 (01), 81-86.
https://doi.org/10.4236/ijoc.2013.31009

[44]. Naeimi, H.; Safari, J.; Heidarnezhad, A. Dyes Pigm. 2007, 73 (2), 251-253.
https://doi.org/10.1016/j.dyepig.2005.12.009

[45]. Issa, R. M.; Khedr, A. M.; Rizk, H. J. Chin. Chem. Soc. 2008, 55 (4), 875-884.
https://doi.org/10.1002/jccs.200800131

[46]. Oladipo, S. D.; Omondi, B. Transit. Met. Chem. 2020, 45 (6), 391-402.
https://doi.org/10.1007/s11243-020-00391-y

[47]. Oladipo, S. D.; Mocktar, C.; Omondi, B. Arab. J. Chem. 2020, 13 (8), 6379-6394.
https://doi.org/10.1016/j.arabjc.2020.05.039

[48]. Khosravi, I.; Hosseini, F.; Khorshidifard, M.; Sahihi, M.; Rudbari, H. A. J. Mol. Struct. 2016, 1119, 373-384.
https://doi.org/10.1016/j.molstruc.2016.04.094

[49]. Aldoshin, S. M.; Chuev, I. I.; Kozina, O. A. Mol. Cryst. Liq. Cryst. 1995, 264 (1), 215-226.

[50]. Ferguson, G.; Glidewell, C.; Low, J. N.; Skakle, J. M. S.; Wardell, J. L. Acta Crystallogr. C 2005, 61 (Pt 7), o445-9.
https://doi.org/10.1107/S0108270105016239

[51]. Selvaganapathi, P.; Thirumaran, S.; Ciattini, S. J. Mol. Struct. 2017, 1148, 547-556.
https://doi.org/10.1016/j.molstruc.2017.07.071

[52]. Mudsainiyan, R. K.; Pandey, S. K. Z. Anorg. Allg. Chem. 2017, 643 (20), 1245-1252.
https://doi.org/10.1002/zaac.201700182

[53]. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11 (1), 19-32.
https://doi.org/10.1039/B818330A

[54]. Fleming, I. Molecular orbitals and organic chemical reactions; ISBN: 978-0-470-74658-5, John Wiley & Sons, 2011.

[55]. Aicha, Y. A.; Bouzzine, S. I. M.; Zair, T.; Bouachrine, M.; Hamidi, M.; Salgado-Morán, G.; Tagle, R. R.; Mendoza-Huizar, L. H. J. Chil. Chem. Soc. 2017, 62 (3), 3637-3646.
https://doi.org/10.4067/s0717-97072017000303637

[56]. Vargas, R.; Garza, J.; Cedillo, A. J. Phys. Chem. A 2005, 109 (39), 8880-8892.
https://doi.org/10.1021/jp052111w

[57]. Borghi, G.; Ferretti, A.; Nguyen, N. L.; Dabo, I.; Marzari, N. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 90 (7), 075135.
https://doi.org/10.1103/PhysRevB.90.075135

[58]. Glendening, E.; Reed, A.; Carpenter, J.; Weinhold, F. NBO Version 3.1, TCI, University of Wisconsin, Madison, 1998.

[59]. Vetrivel, R.; Deka, R. C.; Chatterjee, A.; Kubo, M.; Broclawik, E.; Miyamoto, A. Studies on the Molecular Electrostatic Potential inside the Microporous Material and Its Relevance to Their Catalytic Activity. In Theoretical and Computational Chemistry; Elsevier, 1996; pp 509-541.
https://doi.org/10.1016/S1380-7323(96)80052-5

[60]. Silva, P. J.; Ramos, M. J. J. Org. Chem. 2009, 74 (16), 6120-6129.
https://doi.org/10.1021/jo900980d

[61]. Ophardt, C. E.; Ophardt, C. E. Virtual Chembook: Elmhurst College; Elmhurst College, 2003.

[62]. Oladipo, S. D.; Olotu, F. A.; Soliman, M.; Mocktar, C.; Omondi, B. J. Mol. Struct. 2020, 1219 (128553), 128553.
https://doi.org/10.1016/j.molstruc.2020.128553

[63]. Vartale, S. P.; Halikar, N. K.; Pawar, Y. D.; Tawde, K. V. Arab. J. Chem. 2016, 9, S1117-S1124.
https://doi.org/10.1016/j.arabjc.2011.12.007

[64]. Pakravan, P.; Kashanian, S.; Khodaei, M. M.; Harding, F. J. Pharmacol. Rep. 2013, 65 (2), 313-335.
https://doi.org/10.1016/S1734-1140(13)71007-7

[65]. Pastor, N.; Weinstein, H.; Jamison, E.; Brenowitz, M. J. Mol. Biol. 2000, 304 (1), 55-68.
https://doi.org/10.1006/jmbi.2000.4173

[66]. Lipinski, C. A. J. Pharmacol. Toxicol. Methods 2000, 44 (1), 235-249.
https://doi.org/10.1016/S1056-8719(00)00107-6

[67]. Olotu, F. A.; Munsamy, G.; Soliman, M. E. S. Comput. Struct. Biotechnol. J. 2018, 16, 573-586.
https://doi.org/10.1016/j.csbj.2018.11.005

[68]. Shityakov, S.; Neuhaus, W.; Dandekar, T.; Förster, C. Int. J. Comput. Biol. Drug Des. 2013, 6 (1-2), 146-156.
https://doi.org/10.1504/IJCBDD.2013.052195

[69]. Prasanna, S.; Doerksen, R. J. Curr. Med. Chem. 2009, 16 (1), 21-41.
https://doi.org/10.2174/092986709787002817

[70]. Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45 (12), 2615-2623.
https://doi.org/10.1021/jm020017n

[71]. Sjögren, E.; Westergren, J.; Grant, I.; Hanisch, G.; Lindfors, L.; Lennernäs, H.; Abrahamsson, B.; Tannergren, C. Eur. J. Pharm. Sci. 2013, 49 (4), 679-698.
https://doi.org/10.1016/j.ejps.2013.05.019

[72]. Cornaire, G.; Woodley, J.; Hermann, P.; Cloarec, A.; Arellano, C.; Houin, G. Int. J. Pharm. 2004, 278 (1), 119-131.
https://doi.org/10.1016/j.ijpharm.2004.03.001

Supporting Agencies

The College of Agriculture, Science, and Engineering, the University of Kwazulu-Natal and the Center for High-Performance Computing (CHPC), South Africa.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).