European Journal of Chemistry

Synthesis, crystal structure elucidation, Hirshfeld surface analysis, 3D energy frameworks and DFT studies of 2-(4-fluorophenoxy) acetic acid

Crossmark


Main Article Content

Akhileshwari Prabhuswamy
Yasser Hussein Eissa Mohammed
Fares Hezam Al-Ostoot
Geetha Doddanahalli Venkatesh
Sridhar Mandayam Anandalwar
Shaukath Ara Khanum
Lokanath Neratur Krishnappagowda

Abstract

The compound 2-(4-fluorophenoxy) acetic acid was synthesized by refluxing, 4-fluoro-phenol as a starting material with ethyl chloroacetate in acetone as solvent. The compound crystallizes in the monoclinic crystal system with the space group P21/c. Crystal data for C8H7FO3, a = 13.3087(17) Å, b = 4.9912(6) Å, c = 11.6018(15) Å, β = 104.171(4)°, V = 747.21(16) Å3, Z = 4, T = 293(2) K, μ(CuKα) = 1.142 mm-1, Dcalc = 1.512 g/cm3, 8759 reflections measured (13.72° ≤ 2Θ ≤ 130.62°), 1246 unique (Rint = 0.0528) which were used in all calculations. The final R1 was 0.0458 (>2sigma(I)) and wR2 was 0.1313 (all data). The structure was stabilized by C-H···O and C-H···Cg interactions. The intermolecular interactions in the crystal were studied using Hirshfeld surface analysis. 3D energy frameworks were computed to visualize the packing modes. DFT calculations were performed. The FMOs were studied to estimate the kinetic stability and reactivity of the molecule. The MEP surface was generated to investigate the charge distribution and chemical reactive sites in the molecule.


icon graph This Abstract was viewed 545 times | icon graph Article PDF downloaded 220 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Prabhuswamy, A.; Mohammed, Y. H. E.; Al-Ostoot, F. H.; Venkatesh, G. D.; Anandalwar, S. M.; Khanum, S. A.; Krishnappagowda, L. N. Synthesis, Crystal Structure Elucidation, Hirshfeld Surface Analysis, 3D Energy Frameworks and DFT Studies of 2-(4-Fluorophenoxy) Acetic Acid. Eur. J. Chem. 2021, 12, 304-313.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Geetha, D. V.; Al-Ostoot, F. H.; Mohammed, Y. H. E.; Sridhar, M. A.; Khanum, S. A.; Lokanath, N. K. J. Mol. Struct. 2019, 1178, 384-393.
https://doi.org/10.1016/j.molstruc.2018.10.016

[2]. Sharma, G.; Anthal, S.; Geetha, D. V.; Al-Ostoot, F. H.; Hussein Eissa Mohammed, Y.; Ara Khanum, S.; Sridhar, M. A.; Kant, R. Mol. Cryst. Liq. Cryst. 2018, 675 (1), 85-95.
https://doi.org/10.1080/15421406.2019.1624051

[3]. Mohammed, Y. H. E.; Malojirao, V. H.; Thirusangu, P.; Al-Ghorbani, M.; Prabhakar, B. T.; Khanum, S. A. Eur. J. Med. Chem. 2018, 143, 1826-1839.
https://doi.org/10.1016/j.ejmech.2017.10.082

[4]. Haupt, K.; Dzgoev, A.; Mosbach, K. Anal. Chem. 1998, 70 (3), 628-631.
https://doi.org/10.1021/ac9711549

[5]. Zhang, H.; Song, T.; Zong, F.; Chen, T.; Pan, C. Int. J. Mol. Sci. 2008, 9 (1), 98-106.
https://doi.org/10.3390/ijms9010098

[6]. Mokale, S. N.; Nevase, M. C.; Sakle, N. S.; Dube, P. N.; Shelke, V. R.; Bhavale, S. A.; Begum, A. Bioorg. Med. Chem. Lett. 2014, 24 (9), 2155-2158.
https://doi.org/10.1016/j.bmcl.2014.03.030

[7]. Begum, S.; Bharathi, K.; Prasad, K. Int. J. Pharm. Pharm. Sci. 2016, 8 (10), 66-71.
https://doi.org/10.22159/ijpps.2016v8i10.5005

[8]. Wang, X.; Zhao, T.; Yang, B.; Li, Z.; Cui, J.; Dai, Y.; Qiu, Q.; Qiang, H.; Huang, W.; Qian, H. Bioorg. Med. Chem. 2015, 23 (1), 132-140.
https://doi.org/10.1016/j.bmc.2014.11.016

[9]. Kumara, K.; Al-Ostoot, F. H.; Mohammed, Y. H. E.; Khanum, S. A.; Lokanath, N. K. Chem. Data Coll. 2019, 20 (100195), 100195.
https://doi.org/10.1016/j.cdc.2019.100195

[10]. Takeda, Y.; Kawagoe, K.; Yokomizo, A.; Yokomizo, Y.; Hosokami, T.; Ogihara, Y.; Honda, Y.; Yokohama, S. Chem. Pharm. Bull. (Tokyo) 1998, 46 (3), 434-444.
https://doi.org/10.1248/cpb.46.434

[11]. Dahiya, R.; Kaur, R. Aust. J. Basic App. Sci. 2007, 1 (4), 525-532. http://www.ajbasweb.com/old/ajbas/525-532.pdf (accessed Jul 31, 2021).

[12]. Shahar Yar, M.; Bakht, M. A.; Siddiqui, A. A.; Abdullah, M. M.; De Clercq, E. J. Enzyme Inhib. Med. Chem. 2009, 24 (3), 876-882.
https://doi.org/10.1080/14756360802447917

[13]. Chandrika, P. M.; Yakaiah, T.; Rao, A. R. R.; Narsaiah, B.; Reddy, N. C.; Sridhar, V.; Rao, J. V. Eur. J. Med. Chem. 2008, 43 (4), 846-852.
https://doi.org/10.1016/j.ejmech.2007.06.010

[14]. Rani, P.; Pal, D., Kumar; Hegde, R., Rama; Hashim, S., Riaz. Hem. Ind. 2015, 69 (4), 405-415.
https://doi.org/10.2298/HEMIND140330057R

[15]. Tipparaju, S. K.; Muench, S. P.; Mui, E. J.; Ruzheinikov, S. N.; Lu, J. Z.; Hutson, S. L.; Kirisits, M. J.; Prigge, S. T.; Roberts, C. W.; Henriquez, F. L.; Kozikowski, A. P.; Rice, D. W.; McLeod, R. L. J. Med. Chem. 2010, 53 (17), 6287-6300.
https://doi.org/10.1021/jm9017724

[16]. Sun, A.; Prussia, A.; Zhan, W.; Murray, E. E.; Doyle, J.; Cheng, L.-T.; Yoon, J.-J.; Radchenko, E. V.; Palyulin, V. A.; Compans, R. W.; Liotta, D. C.; Plemper, R. K.; Snyder, J. P. J. Med. Chem. 2006, 49 (17), 5080-5092.
https://doi.org/10.1021/jm0602559

[17]. Nikalje, A. P. G.; Deshpande, D.; Une, H. D. Euro. J. Exp. Bio. 2012, 2 (2), 343-353. https://www.imedpub.com/articles/facile-synthesis-and-iin-vivoi-hypoglycemic-activity-of-novel-2-4hiazolidinedione-derivatives.pdf (accessed Jul 31, 2021).

[18]. Al-Ostoot, F. H.; Geetha, D. V.; Mohammed, Y. H. E.; Akhileshwari, P.; Sridhar, M. A.; Khanum, S. A. J. Mol. Struct. 2020, 1202 (127244), 127244.
https://doi.org/10.1016/j.molstruc.2019.127244

[19]. Al-Ostoot, F. H.; Mohammed, Y. H. E.; Zabiulla, A. N. K.; Khanum, S. A. J. Appl. Pharm. Sci. 2019, 9 (7), 42-49.

[20]. Eissa Mohammed, Y. H.; Thirusangu, P.; Vigneshwaran, V.; Prabhakar, B. T.; Khanum, S. A. Biomed. Pharmacother. 2017, 95, 375-386.
https://doi.org/10.1016/j.biopha.2017.08.105

[21]. Northover, B. J.; Verghese, J. J. Pharm. Pharmacol. 1962, 14 (1), 615-616.
https://doi.org/10.1111/j.2042-7158.1962.tb11149.x

[22]. Harsanyi, S.; Zamborsky, R.; Krajciova, L.; Kokavec, M.; Danisovic, L. Medicina (Kaunas) 2020, 56 (4), 153.
https://doi.org/10.3390/medicina56040153

[23]. Yang, X.; Xu, P.; Gao, Q.; Tan, M. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2002, 32 (1), 59-68.

[24]. Sun, Z.; Ding, B.; Wu, B.; You, Y.; Ding, X.; Hou, X. J. Phys. Chem. C Nanomater. Interfaces 2012, 116 (3), 2543-2547.
https://doi.org/10.1021/jp205871a

[25]. Thomas, M. G.; Lawson, C.; Allanson, N. M.; Leslie, B. W.; Bottomley, J. R.; McBride, A.; Olusanya, O. A. Bioorg. Med. Chem. Lett. 2003, 13 (3), 423-426.
https://doi.org/10.1016/S0960-894X(02)00957-5

[26]. Ramadan, E. M.; Abou-Taleb, K. A.; Galal, G. F.; Abdel-Hamid, N. S. Ann. Agric. Sci. 2017, 62 (2), 151-159.
https://doi.org/10.1016/j.aoas.2017.11.002

[27]. Al-Ostoot, F. H.; Stondus, J.; Anthal, S.; Venkatesh, G. D.; Mohammed, Y. H. E.; Sridhar, M. A.; Khanum, S. A.; Kant, R. Eur. J. Chem. 2019, 10 (3), 234-238.
https://doi.org/10.5155/eurjchem.10.3.234-238.1874

[28]. Khamees, H. A.; Mohammed, Y. H. E.; Ananda; Al-Ostoot, F. H.; Sangappa; Alghamdi, S.; Khanum, S. A.; Madegowda, M. J. Mol. Struct. 2020, 1199 (127024), 127024.
https://doi.org/10.1016/j.molstruc.2019.127024

[29]. Khamees, H. A.; Mohammed, Y. H. E.; Swamynayaka, A.; Al-Ostoot, F. H.; Sert, Y.; Alghamdi, S.; Khanum, S. A.; Madegowda, M. ChemistrySelect 2019, 4 (15), 4544-4558.
https://doi.org/10.1002/slct.201900646

[30]. Smith, G.; Lynch, D. E.; Sagatys, D. S.; Kennard, C. H. L.; Katekar, G. F. Aust. J. Chem. 1992, 45 (7), 1101-1108.
https://doi.org/10.1071/CH9921101

[31]. Mohammed, Y. H. I.; Naveen, S.; Mamatha, S. V.; Jyothi, M.; Khanum, S. A.; Lokanath, N. K. IUCrdata 2016, 1 (10), x161714. https://doi.org/10.1107/s2414314616017144.
https://doi.org/10.1107/S2414314616017144

[32]. Ahmad, N. A.; Naveen, S.; Karthik Kumara, K.; Jamalis, J.; Lokanath, N. K. Der Pharma Chem. 2016, 8 (2), 49-53.

[33]. Rigaku, CrystalClear, Rigaku Corporation, Tokyo, Japan, 2011.

[34]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64 (Pt 1), 112-122.
https://doi.org/10.1107/S0108767307043930

[35]. Spek, A. L. Acta Crystallogr. D Biol. Crystallogr. 2009, 65 (Pt 2), 148-155.
https://doi.org/10.1107/S090744490804362X

[36]. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. J. Appl. Crystallogr. 2020, 53 (Pt 1), 226-235.
https://doi.org/10.1107/S1600576719014092

[37]. McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S. Acta Crystallogr. B 2004, 60 (Pt 6), 627-668.
https://doi.org/10.1107/S0108768104020300

[38]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. IUCrJ 2017, 4 (Pt 5), 575-587.
https://doi.org/10.1107/S205225251700848X

[39]. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11 (1), 19-32.
https://doi.org/10.1039/B818330A

[40]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Chem. Commun. (Camb.) 2007, No. 37, 3814-3816.
https://doi.org/10.1039/b704980c

[41]. Turner, M. J.; Grabowsky, S.; Jayatilaka, D.; Spackman, M. A. J. Phys. Chem. Lett. 2014, 5 (24), 4249-4255.
https://doi.org/10.1021/jz502271c

[42]. Turner, M. J.; Thomas, S. P.; Shi, M. W.; Jayatilaka, D.; Spackman, M. A. Chem. Commun. (Camb.) 2015, 51 (18), 3735-3738.
https://doi.org/10.1039/C4CC09074H

[43]. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14 (11), 1347-1363.
https://doi.org/10.1002/jcc.540141112

[44]. Akhileshwari, P.; Kiran, K. R.; Sridhar, M. A.; Sadashiva, M. P.; Lokanath, N. K. J. Mol. Struct. 2021, 1242 (130747), 130747.
https://doi.org/10.1016/j.molstruc.2021.130747

[45]. Bendjeddou, A.; Abbaz, T.; Ayari, A.; Benahmed, M.; Gouasmia, A.; Villemin, D. Orient. J. Chem. 2016, 32 (2), 799-806.
https://doi.org/10.13005/ojc/320205

[46]. Gasteiger, J.; Li, X.; Rudolph, C.; Sadowski, J.; Zupan, J. J. Am. Chem. Soc. 1994, 116 (11), 4608-4620.
https://doi.org/10.1021/ja00090a009

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).