European Journal of Chemistry

N'-(Pyridin-3-ylmethylene)benzenesulfonohydrazide: Crystal structure, DFT, Hirshfeld surface and in silico anticancer studies

Crossmark


Main Article Content

Ifeyinwa Stella Ozochukwu
Obinna Chibueze Okpareke
David Chukwuma Izuogu
Akachukwu Ibezim
Oguejiofo Theophilus Ujam
Jonnie Niyi Asegbeloyin

Abstract

A new Schiff base, N'-(pyridin-3-ylmethylene)benzenesulfonohydrazide, was synthesized and characterized by elemental analysis, IR, Mass, 1H NMR and 13C NMR spectroscopy, and single-crystal X-ray determination. The asymmetric molecule crystallized in the monoclinic crystal system and P2(1)/c space group. Crystal data for C12H11N3O2S: a = 9.7547(4) Å, b = 9.8108(4) Å, c = 13.1130(5) Å, β = 109.038(2)°, = 1186.29(8) Å3, Z = 4, μ(MoKα) = 0.270 mm-1, Dcalc = 1.463 g/cm3, 13338 reflections measured (5.296° ≤ 2Θ ≤ 55.484°), 2790 unique (Rint = 0.0494, Rsigma = 0.0400) which were used in all calculations. The final R1 was 0.0345 (I > 2σ(I)) and wR2 was 0.0914 (all data). In the crystal structure of the compound C12H11N3O2S, molecules are linked in a continuous chain by intermolecular of N∙∙∙HN=N hydrogen bonds. The pyridine moiety is planar, while the benzenesulfonohydrazide group adopts a gauche conformation about C-S-N angle (105.54°). The Hirshfeld surface analysis and fingerprint plots were used to establish the presence, nature, and percentage contribution of the different intermolecular interactions, including N-H∙∙∙N, C-H∙∙∙O, C-H∙∙∙C, and π∙∙∙π interactions, with the C-H contacts having the most significant contribution. The pairwise interaction energies were calculated at the B3LYP/6-31G(d,p) level of theory, and interaction energy profiles showed that the electrostatic forces had the most significant contribution to the total interaction energies of the different molecular pairs in the crystal. In-silico technique was used to examine the compound as a possible anticancer agent. The molecule demonstrated zero violation of the criteria of Lipinski’s rule of five with a polar surface area of 116.03 Å2. The molecule displayed favorable binding interactions with ten selected validated anticancer protein targets ranging from -9.58 to -11.95 kcal/mol and -2.73 to -5.73 kcal/mol on scoring and rescoring, respectively, with London dG and Affinity dG scoring functions. Two proteins; farnesyl transferase and signaling protein, preferred interactions with the Schiff-base over their co-crystallized inhibitors according to London dG scoring. Analysis of binding poses indicated that the Schiff-base made contact with amino acid residues of the two proteins through the N-H, sulphonyl oxygen, and phenyl groups, and this could be exploited in chemical and structural modification towards activity optimization.


icon graph This Abstract was viewed 622 times | icon graph Article PDF downloaded 267 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Ozochukwu, I. S.; Okpareke, O. C.; Izuogu, D. C.; Ibezim, A.; Ujam, O. T.; Asegbeloyin, J. N. N’-(Pyridin-3-ylmethylene)benzenesulfonohydrazide: Crystal Structure, DFT, Hirshfeld Surface and in Silico Anticancer Studies. Eur. J. Chem. 2021, 12, 256-264.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Fonkui, T. Y.; Ikhile, M. I.; Ndinteh, D. T.; Njobeh, P. B. Trop. J. Pharm. Res. 2019, 17 (12), 2507-2518.
https://doi.org/10.4314/tjpr.v17i12.29

[2]. Hegazy, W. H. Eur. J. Chem. 2014, 5 (3), 415-418.
https://doi.org/10.5155/eurjchem.5.3.415-418.1045

[3]. Kumar, H.; Chaudhary, R. P. Der Chemica Sinica 2010, 1 (2), 55-56.
https://doi.org/10.4103/0022-3859.68647

[4]. Asegbeloyin, J. N.; Ujam, O. T.; Okafor, E. C.; Babahan, I.; Coban, E. P.; Ozmen, A.; Biyik, H. Bioinorg. Chem. Appl. 2014, 2014, 718175.

[5]. Asegbeloyin, J. N.; Izuogu, D. C.; Oyeka, E. E.; Okpareke, O. C.; Ibezim, A. J. Mol. Struct. 2019, 1175, 219-229.
https://doi.org/10.1016/j.molstruc.2018.07.073

[6]. Arafath, M. A.; Adam, F.; Razali, M. R.; Ahmed Hassan, L. E.; Ahamed, M. B. K.; Majid, A. M. S. A. J. Mol. Struct. 2017, 1130, 791-798.
https://doi.org/10.1016/j.molstruc.2016.10.099

[7]. Hussein, T. I.; Ahmed, M. A.; Arbab, I. A.; Ibrahim, A. S.; Al-Bratty, M.; Alhazmi, H. A.; Najmi, A. Eur. J. Chem. 2020, 11 (1), 15-20.
https://doi.org/10.5155/eurjchem.11.1.15-20.1941

[8]. Andiappan, K.; Sanmugam, A.; Deivanayagam, E.; Karuppasamy, K.; Kim, H.-S.; Vikraman, D. Sci. Rep. 2018, 8 (1), 3054-3065.
https://doi.org/10.1038/s41598-018-21366-1

[9]. Malladi, S.; Isloor, A. M.; Isloor, S.; Akhila, D. S.; Fun, H.-K. Arab. J. Chem. 2013, 6 (3), 335-340.
https://doi.org/10.1016/j.arabjc.2011.10.009

[10]. El-Shekeil, A. G.; Abubakr, A. O.; Al-Aghbari, S. A.; Nassar, M. Y. Eur. J. Chem. 2014, 5 (3), 410-414.
https://doi.org/10.5155/eurjchem.5.3.410-414.996

[11]. Abd-Elzaher, M. M.; Labib, A. A.; Mousa, H. A.; Moustafa, S. A.; Ali, M. M.; El-Rashedy, A. A. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5 (1), 85-96.
https://doi.org/10.1016/j.bjbas.2016.01.001

[12]. Nagesh, G. Y.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M. J. Mol. Struct. 2015, 1079, 423-432.
https://doi.org/10.1016/j.molstruc.2014.09.013

[13]. Bhat, M. A.; Al-Omar, M. A. Acta Pol. Pharm. 2011, 68 (3), 375-380.

[14]. Nithinchandra; Kalluraya, B.; Aamir, S.; Shabaraya, A. R. Eur. J. Med. Chem. 2012, 54, 597-604.
https://doi.org/10.1016/j.ejmech.2012.06.011

[15]. Ashutosh, K. Medicinal Chemistry; New Age International Ltd.: New Delhi, India, 2007; pp. 794.

[16]. Gibbs, J. B. Science 2000, 287 (5460), 1969-1973.
https://doi.org/10.1126/science.287.5460.1969

[17]. WHO Media Centre. Cancer https://www.who.int/en/news-room/fact-sheets/detail/cancer (accessed Apr 8, 2021).

[18]. Globocan Fact Stats, https://gco.iarc.fr/ (accessed Apr 8, 2021).

[19]. Giaccone, G. Drugs 2000, 59 (Supplement 4), 9-17.
https://doi.org/10.2165/00003495-200059004-00002

[20]. Fuertes, M. A.; Alonso, C.; Pérez, J. M. Chem. Rev. 2003, 103 (3), 645-662.
https://doi.org/10.1021/cr020010d

[21]. Gasser, G.; Ott, I.; Metzler-Nolte, N. J. Med. Chem. 2011, 54 (1), 3-25.
https://doi.org/10.1021/jm100020w

[22]. APEX-2. Bruker-Nonius AXS. 2008, Bruker AXS, Madison, Wisconsin, USA.

[23]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64 (1), 112-122.
https://doi.org/10.1107/S0108767307043930

[24]. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J. Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer17. The University of Western Australia, 2017.

[25]. Spackman, M. A.; McKinnon, J. J. CrystEngComm 2002, 4 (66), 378-392.
https://doi.org/10.1039/B203191B

[26]. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T. Acta Crystallogr. E Crystallogr. Commun. 2019, 75 (Pt 3), 308-318.
https://doi.org/10.1107/S2056989019001129

[27]. Molecular Operating Environment (MOE), 2010.01; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2010.

[28]. Ntie-Kang, F.; Nwodo, J. N.; Ibezim, A.; Simoben, C. V.; Karaman, B.; Ngwa, V. F.; Sippl, W.; Adikwu, M. U.; Mbaze, L. M. J. Chem. Inf. Model. 2014, 54 (9), 2433-2450.
https://doi.org/10.1021/ci5003697

[29]. Govindaraj, V.; Ramanathan, S. Turk. J. Chem. 2014, 38, 521-530.
https://doi.org/10.3906/kim-1301-83

[30]. Ejidike, I. P.; Ajibade, P. A.. Bioinorg. Chem. Appl. 2015, 2015, 890734.

[31]. Yusnita, J.; Puvaneswary, S.; Mohd. Ali, H.; Robinson, W. T.; Kwai-Lin, T. Polyhedron 2009, 28 (14), 3050-3054.
https://doi.org/10.1016/j.poly.2009.06.059

[32]. Tan, S. L.; Tiekink, E. R. T. Acta Crystallogr. E Crystallogr. Commun. 2020, 76 (Pt 1), 102-110.
https://doi.org/10.1107/S2056989019016840

[33]. Izuogu, D. C.; Asegbeloyin, J. N.; Jotani, M. M.; Tiekink, E. R. T. Acta Crystallogr. E Crystallogr. Commun. 2020, 76 (Pt 5), 697-702.
https://doi.org/10.1107/S2056989020005101

[34]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. IUCrJ 2017, 4 (Pt 5), 575-587.
https://doi.org/10.1107/S205225251700848X

[35]. Lipinski, C. A. J. Pharmacol. Toxicol. Methods 2000, 44 (1), 235-249.
https://doi.org/10.1016/S1056-8719(00)00107-6

[36]. Hast, M. A.; Fletcher, S.; Cummings, C. G.; Pusateri, E. E.; Blaskovich, M. A.; Rivas, K.; Gelb, M. H.; Van Voorhis, W. C.; Sebti, S. M.; Hamilton, A. D.; Beese, L. S. Chem. Biol. 2009, 16 (2), 181-192.
https://doi.org/10.1016/j.chembiol.2009.01.014

[37]. Shima, F.; Ijiri, Y.; Muraoka, S.; Liao, J.; Ye, M.; Araki, M.; Matsumoto, K.; Yamamoto, N.; Sugimoto, T.; Yoshikawa, Y.; Kumasaka, T.; Yamamoto, M.; Tamura, A.; Kataoka, T. J. Biol. Chem. 2010, 285 (29), 22696-22705.
https://doi.org/10.1074/jbc.M110.125161

Supporting Agencies

The African-German Network of Excellence in Science (AGNES).
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).