European Journal of Chemistry

Synthesis of substituted pyridine based sulphonamides as an antidiabetic agent



Main Article Content

Gautam Sadawarte
Samadhan Jagatap
Mukesh Patil
Vasant Jagrut
Jamatsing Darbarsing Rajput

Abstract

This research work describes the synthesis of a new series of heterocyclic compounds, namely sulfonamide derivatives. Sulfonamides are a diverse class of organic compounds having significant and potent biological activities. Diverse synthetic methods have been engaged to build up its various derivatives for different biological functions. In this study, the production of novel pyridine-based heterocyclic compounds having sulfonamide moieties has been elaborated. The obtained sulfonamide-based pyridine scaffold was used to investigate their alpha-amylase inhibition activity. The structures of freshly prepared compounds were described using 1H NMR, 13C NMR, and IR spectroscopic techniques. The molecular docking of sulfonamides performed against porcine pancreatic alpha-amylase using PDB file 1LP was used for generation of grid. All the new synthesized compounds were shown notable anti-diabetic activity.


icon graph This Abstract was viewed 977 times | icon graph Article PDF downloaded 463 times

How to Cite
(1)
Sadawarte, G.; Jagatap, S.; Patil, M.; Jagrut, V.; Rajput, J. D. Synthesis of Substituted Pyridine Based Sulphonamides As an Antidiabetic Agent. Eur. J. Chem. 2021, 12, 279-283.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Hansch C., Sammes P. G., Taylor J. B. Comprehensive Medicinal Chemistry, Vol. 2, Pergamon Press, Oxford, 1990.

[2]. Kanda, Y.; Kawanishi, Y.; Oda, K.; Sakata, T.; Mihara, S. I.; Asakura, K.; Kanemasa, T.; Ninomiya, M.; Fujimoto, M.; Konoike, T. Bioorg. Med. Chem. 2001, 9 (4), 897-907.
https://doi.org/10.1016/S0968-0896(00)00305-9

[3]. Stokes, S. S.; Albert, R.; Buurman, E. T.; Andrews, B.; Shapiro, A. B.; Green, O. M.; McKenzie, A. R.; Otterbein, L. R. Bioorg. Med. Chem. Lett. 2012, 22 (23), 7019-7023.
https://doi.org/10.1016/j.bmcl.2012.10.003

[4]. Chibale, K.; Haupt, H.; Kendrick, H.; Yardley, V.; Saravanamuthu, A.; Fairlamb, A. H.; Croft, S. L. Bioorg. Med. Chem. Lett. 2001, 11 (19), 2655-2657.
https://doi.org/10.1016/S0960-894X(01)00528-5

[5]. Ezabadi, I. R.; Camoutsis, C.; Zoumpoulakis, P.; Geronikaki, A.; Soković, M.; Glamocilija, J.; Cirić, A. Bioorg. Med. Chem. 2008, 16 (3), 1150-1161.
https://doi.org/10.1016/j.bmc.2007.10.082

[6]. Kennedy, J. F.; Thorley, M.: Pharmaceutical Substances, 3rd ed., Kleeman, A.; Engel, J.; Kutscher, B.; Reichert, D.; Thieme: Stuttgart, 1999.

[7]. Gal, C. S.-L. Cardiovasc. Drug Rev. 2006, 19 (3), 201-214.
https://doi.org/10.1111/j.1527-3466.2001.tb00065.x

[8]. Natarajan, A.; Guo, Y.; Harbinski, F.; Fan, Y.-H.; Chen, H.; Luus, L.; Diercks, J.; Aktas, H.; Chorev, M.; Halperin, J. A. J. Med. Chem. 2004, 47 (21), 4979-4982.
https://doi.org/10.1021/jm0496234

[9]. Vullo, D.; De Luca, V.; Scozzafava, A.; Carginale, V.; Rossi, M.; Supuran, C. T.; Capasso, C. Bioorg. Med. Chem. 2013, 21 (15), 4521-4525.
https://doi.org/10.1016/j.bmc.2013.05.042

[10]. Wilson, C. O.; Gisvold, O.; Block, J. H., Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 11th ed.; Block, J., Beale, J., Wilson, C. O., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, 2004.

[11]. Levin, J. I.; Chen, J. M.; Du, M. T.; Nelson, F. C.; Killar, L. M.; Skala, S.; Sung, A.; Jin, G.; Cowling, R.; Barone, D.; March, C. J.; Mohler, K. M.; Black, R. A.; Skotnicki, J. S. Bioorg. Med. Chem. Lett. 2002, 12 (8), 1199-1202.
https://doi.org/10.1016/S0960-894X(02)00136-1

[12]. Kim, D.-K.; Lee, J. Y.; Lee, N.; Ryu, D. H.; Kim, J.-S.; Lee, S.; Choi, J.-Y.; Ryu, J.-H.; Kim, N.-H.; Im, G.-J.; Choi, W.-S.; Kim, T.-K. Bioorg. Med. Chem. 2001, 9 (11), 3013-3021.
https://doi.org/10.1016/S0968-0896(01)00200-0

[13]. Hu, B.; Ellingboe, J.; Han, S.; Largis, E.; Lim, K.; Malamas, M.; Mulvey, R.; Niu, C.; Oliphant, A.; Pelletier, J.; Singanallore, T.; Sum, F.-W.; Tillett, J.; Wong, V. Bioorg. Med. Chem. 2001, 9 (8), 2045-2059.
https://doi.org/10.1016/S0968-0896(01)00114-6

[14]. Ma, T.; Fuld, A. D.; Rigas, J. R.; Hagey, A. E.; Gordon, G. B.; Dmitrovsky, E.; Dragnev, K. H. Chemotherapy 2012, 58 (4), 321-329.
https://doi.org/10.1159/000343165

[15]. Adkins, J. C.; Faulds, D. Amprenavir. Drugs 1998, 55, 837-842.
https://doi.org/10.2165/00003495-199855060-00015

[16]. Roush, W. R.; Gwaltney, S. L.; Cheng, J.; Scheidt, K. A.; McKerrow, J. H.; Hansell, E. J. Am. Chem. Soc. 1998, 120 (42), 10994-10995.
https://doi.org/10.1021/ja981792o

[17]. Hoehn, H.; Polacek, I.; Schulze, E. J. Med. Chem. 1973, 16 (12), 1340-1346.
https://doi.org/10.1021/jm00270a006

[18]. Purohit, S. S.; Veerapur, V. P. Sch. Acad. J. Pharm. 2014, 3 (1), 26-37. https://saspublishers.com/media/articles/SAJP3126-37.pdf (accessed Jul 15, 2021).

[19]. Ma, F.; Liu, J.; Zhou, T.; Lei, M.; Chen, J.; Wang, X.; Zhang, Y.; Shen, X.; Hu, L. Eur. J. Med. Chem. 2018, 152, 307-317.
https://doi.org/10.1016/j.ejmech.2018.04.028

[20]. Williams, D. R. Chem. Rev. 1972, 72 (3), 203-213.
https://doi.org/10.1021/cr60277a001

[21]. Fathalla, O. A.; Awad, S. M.; Mohamed, M. S. Arch. Pharm. Res. 2005, 28 (11), 1205-1212.
https://doi.org/10.1007/BF02978199

[22]. Domagk, G. Angew. Chem. Weinheim Bergstr. Ger. 1935, 48 (42), 657-667.
https://doi.org/10.1002/ange.19350484202

[23]. Abdul Qadir, M.; Ahmed, M.; Aslam, H.; Waseem, S.; Shafiq, M. I. J. Chem. 2015, 2015, 1-8.
https://doi.org/10.1155/2015/524056

[24]. Casini, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. Curr. Cancer Drug Targets 2002, 2 (1), 55-75.
https://doi.org/10.2174/1568009023334060

[25]. Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. Curr. Med. Chem. 2003, 10 (11), 925-953.
https://doi.org/10.2174/0929867033457647

[26]. Thun, M. J.; Henley, S. J.; Patrono, C. J. Natl. Cancer Inst. 2002, 94 (4), 252-266.
https://doi.org/10.1093/jnci/94.4.252

[27]. Dalloul, H. M. MOJ Bioorg. Org. Chem. 2017, 1 (7), 255-260.
https://doi.org/10.15406/mojboc.2017.01.00044

[28]. Singh, V.; Kaushik, N. K.; Singh, R. Asian J. Res. Chem. 2011, 4, 339-347.

[29]. Sharma, R.; Soman, S. S. Eur. J. Med. Chem. 2015, 90, 342-350.
https://doi.org/10.1016/j.ejmech.2014.11.041

[30]. Kumar Parai, M.; Panda, G.; Srivastava, K.; Kumar Puri, S. Bioorg. Med. Chem. Lett. 2008, 18 (2), 776-781.
https://doi.org/10.1016/j.bmcl.2007.11.038

[31]. Mirian, M.; Zarghi, A.; Sadeghi, S.; Tabaraki, P.; Tavallaee, M.; Dadrass, O.; Sadeghi-Aliabadi, H. Iran. J. Pharm. Res. 2011, 10 (4), 741-748.

[32]. Kolaczek, A.; Fusiarz, I.; Lawecka, J.; Branowska, D. Institute of Chemistry, Siedlce University, Siedlce, Poland. https://www.researchgate.net/profile/Rafik_Karaman/post/im_working_on_sulphonamids_antibacterial_does_any_one_prepear_any_analogs_for_sulphonamids_and_which_rout_he_use_paper_are_needed_thanks/attachment/59d6355a79197b8077992ee6/AS%3A383878217912320%401468535107273/download/Sulfonamides+1.pdf (accessed Jul 15, 2021).

[33]. Bagul, S. D.; Rajput, J. D.; Tadavi, S. K.; Bendre, R. S. Res. Chem. Intermed. 2017, 43 (4), 2241-2252.
https://doi.org/10.1007/s11164-016-2759-5

[34]. Liu, Y.; Lu, Y.; Prashad, M.; Repic, O.; Blacklock, T. J. Adv. Synth. Catal. 2005, 347 (2-3), 217-219.
https://doi.org/10.1002/adsc.200404236

[35]. Akhter, F.; Hashim, A.; Khan, M. S.; Ahmad, S.; Iqbal, D.; Srivastava, A. K.; Siddiqui, M. H. S. Afr. J. Bot. 2013, 88, 265-272.
https://doi.org/10.1016/j.sajb.2013.06.024

[36]. Rajput, J. D.; Bagul, S. D.; Hosamani, A. A.; Patil, M. M.; Bendre, R. S. Res. Chem. Intermed. 2017, 43 (10), 5377-5393.
https://doi.org/10.1007/s11164-017-2933-4

[37]. Gilles, C.; Astier, J.-P.; Marchis-Mouren, G.; Cambillau, C.; Payan, F. C. Eur. J. Biochem. 1996, 238 (2), 561-569.
https://doi.org/10.1111/j.1432-1033.1996.0561z.x

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).