European Journal of Chemistry

Synthesis, characterization, and biological activities of substituted pyridine-based azomethine scaffolds

Crossmark


Main Article Content

Gautam Prabhakar Sadawarte
Jamatsing Darbarsing Rajput
Amol Diliprao Kale
Rajendra Pralhadrao Phase
Vasant Bhagwan Jagrut

Abstract

The present research work describes the synthesis of a new series of heterocyclic compounds, namely, pyridine-based azomethine scaffolds. A total of eight derivatives were prepared, purified, and characterized by analytical methods such as 1H NMR, 13C NMR, and IR spectroscopic techniques. All compounds were used to investigate their alpha-amylase inhibition activity. We have also reported antimicrobial activity using a micro broth dilution assay, with microbial strains Pseudomonas aeruginosa (NCIM 5031), Escherichia coli (NCIM 2065), Bacillus subtilis (NCIM 2699), Aspergillus niger (NCIM 620), Aspergillus fumigatus (NCIM 902), and Aspergillus flavus (NCIM 549). Finally, we report the antioxidant activity of the synthesized derivatives using a DPPH free radical assay.


icon graph This Abstract was viewed 389 times | icon graph Article PDF downloaded 133 times

How to Cite
(1)
Sadawarte, G. P.; Rajput, J. D.; Kale, A. D.; Phase, R. P.; Jagrut, V. B. Synthesis, Characterization, and Biological Activities of Substituted Pyridine-Based Azomethine Scaffolds. Eur. J. Chem. 2024, 15, 226-231.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Amin, A.; Qadir, T.; Sharma, P. K.; Jeelani, I.; Abe, H. A review on the medicinal and industrial applications of N-containing heterocycles. Open Med. Chem. J. 2022, 16.
https://doi.org/10.2174/18741045-v16-e2209010

[2]. Ling, Y.; Hao, Z.-Y.; Liang, D.; Zhang, C.-L.; Liu, Y.-F.; Wang, Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther. 2021, 15, 4289-4338.
https://doi.org/10.2147/DDDT.S329547

[3]. Millanao, A. R.; Mora, A. Y.; Villagra, N. A.; Bucarey, S. A.; Hidalgo, A. A. Biological effects of quinolones: A family of broad-spectrum antimicrobial agents. Molecules 2021, 26, 7153.
https://doi.org/10.3390/molecules26237153

[4]. Chaubey, A.; Pandeya, S. N. Pyridine, A versatile nucleuse in pharmaceutical field. Asian Journal of Pharmaceutical and Clinical Research 2011, 4, 5-8. https://innovareacademics.in/journal/ ajpcr/Vol4Issue4/549.pdf

[5]. Makam, P.; Kannan, T. 2-Aminothiazole derivatives as antimycobacterial agents: Synthesis, characterization, in vitro and in silico studies. Eur. J. Med. Chem. 2014, 87, 643-656.
https://doi.org/10.1016/j.ejmech.2014.09.086

[6]. Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417-433.
https://doi.org/10.1128/MMBR.00016-10

[7]. Helal, M. H. M.; Salem, M. A.; El-Gaby, M. S. A.; Aljahdali, M. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. Eur. J. Med. Chem. 2013, 65, 517-526.
https://doi.org/10.1016/j.ejmech.2013.04.005

[8]. Desai, S. R.; Desai, V. G.; Pissurlenkar, R. R. Design, synthesis and molecular docking studies of new azomethine derivatives as promising anti-inflammatory agents. Bioorg. Chem. 2022, 120, 105595.
https://doi.org/10.1016/j.bioorg.2021.105595

[9]. Abdelazeem, A. H.; El-Saadi, M. T.; Safi El-Din, A. G.; Omar, H. A.; El-Moghazy, S. M. Design, synthesis and analgesic/anti-inflammatory evaluation of novel diarylthiazole and diarylimidazole derivatives towards selective COX-1 inhibitors with better gastric profile. Bioorg. Med. Chem. 2017, 25, 665-676.
https://doi.org/10.1016/j.bmc.2016.11.037

[10]. Sahoo, C. R.; Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar- 751 003, Odisha, India; Patro, R.; Sahoo, J.; Padhy, R. N.; Paidesetty, S. K. Design, molecular docking of synthesized Schiff-based thiazole/ pyridine derivatives as potent antibacterial inhibitor. Indian Drugs 2019, 56, 20-25.
https://doi.org/10.53879/id.56.11.12007

[11]. Chiacchio, M. A.; Iannazzo, D.; Romeo, R.; Giofrè, S. V.; Legnani, L. Pyridine and pyrimidine derivatives as privileged scaffolds in biologically active agents. Curr. Med. Chem. 2020, 26, 7166-7195.
https://doi.org/10.2174/0929867325666180904125400

[12]. Wang A combined role of calcium channel blockers and angiotensin receptor blockers in stroke prevention. Vasc. Health Risk Manag. 2009, 593.
https://doi.org/10.2147/VHRM.S6203

[13]. Zhang, D.; Hansen, E. B., Jr; Deck, J.; Heinze, T. M.; Sutherland, J. B.; Cerniglia, C. E. Fungal biotransformation of the antihistamine azatadine by Cunninghamella elegans. Appl. Environ. Microbiol. 1996, 62, 3477-3479.
https://doi.org/10.1128/aem.62.9.3477-3479.1996

[14]. Patil, P.; Sethy, S. P.; Sameena, T.; Shailaja, K. Pyridine and Its Biological Activity: A Review. Pyridine and Its Biological Activity: A Review. Asian J. Research Chem. 2013, 6, 888-899 https://ajrconline.org/ AbstractView.aspx?PID=2013-6-10-2.

[15]. Balzarini, J.; Stevens, M.; De Clercq, E.; Schols, D.; Pannecouque, C. Pyridine N-oxide derivatives: unusual anti-HIV compounds with multiple mechanisms of antiviral action. J. Antimicrob. Chemother. 2005, 55, 135-138.
https://doi.org/10.1093/jac/dkh530

[16]. Kaur, R.; Kaur, P.; Sharma, S.; Singh, G.; Mehndiratta, S.; Bedi, P.; Nepali, K. Anti-cancer pyrimidines in diverse scaffolds: A review of patent literature. Recent Pat. Anticancer Drug Discov. 2014, 10, 23-71.
https://doi.org/10.2174/1574892809666140917104502

[17]. Kassab, A. E.; Gedawy, E. M. Synthesis and anticancer activity of novel 2-pyridyl hexahyrocyclooctathieno[2,3-d]pyrimidine derivatives. Eur. J. Med. Chem. 2013, 63, 224-230.
https://doi.org/10.1016/j.ejmech.2013.02.011

[18]. De Clercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov. 2002, 1, 13-25.
https://doi.org/10.1038/nrd703

[19]. Corsaro, A.; Chiacchio, U.; Pistarà, V.; Borrello, L.; Romeo, G.; Dalpozzo, R. Synthesis and biological properties of 2-oxabicyclo[4.1.0]heptane nucleosides containing uracil, and thymine. ARKIVOC 2006, 2006, 74-84.
https://doi.org/10.3998/ark.5550190.0007.608

[20]. Chiacchio, U.; Iannazzo, D.; Piperno, A.; Romeo, R.; Romeo, G.; Rescifina, A.; Saglimbeni, M. Synthesis and biological evaluation of phosphonated carbocyclic 2′-oxa-3′-aza-nucleosides. Bioorg. Med. Chem. 2006, 14, 955-959.
https://doi.org/10.1016/j.bmc.2005.09.024

[21]. Sadawarte, G.; Jagatap, S.; Patil, M.; Jagrut, V.; Rajput, J. D. Synthesis of substituted pyridine based sulphonamides as an antidiabetic agent. Eur. J. Chem. 2021, 12, 279-283.
https://doi.org/10.5155/eurjchem.12.3.279-283.2118

[22]. Rani, J.; Kumar, S.; Saini, M.; Mundlia, J.; Verma, P. K. Biological potential of pyrimidine derivatives in a new era. Res. Chem. Intermed. 2016, 42, 6777-6804.
https://doi.org/10.1007/s11164-016-2525-8

[23]. Rajput, J. D.; Bagul, S. D.; Hosamani, A. A.; Patil, M. M.; Bendre, R. S. Synthesis, characterizations, biological activities and docking studies of novel dihydroxy derivatives of natural phenolic monoterpenoids containing azomethine linkage. Res. Chem. Intermed. 2017, 43, 5377-5393.
https://doi.org/10.1007/s11164-017-2933-4

[24]. Lourenço, M. C. S.; Souza, M. V. N. de; Pinheiro, A. C.; Ferreira, M. de L.; Gonçalves, R. S. B.; Nogueira, T. C. M.; Peralta, M. A. Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues. ARKIVOC 2007, 2007, 181-191.
https://doi.org/10.3998/ark.5550190.0008.f18

[25]. Hearn, M. J.; Cynamon, M. H.; Chen, M. F.; Coppins, R.; Davis, J.; Joo-On Kang, H.; Noble, A.; Tu-Sekine, B.; Terrot, M. S.; Trombino, D. Preparation and antitubercular activities in vitro and in vivo of novel Schiff bases of isoniazid. Eur. J. Med. Chem. 2009, 44, 4169-4178.
https://doi.org/10.1016/j.ejmech.2009.05.009

[26]. Khan, M. S. Y.; Chawla, G.; Mueed, M. A. Synthesis and biological activity of some isoniazid based 1,3,4-oxadiazole derivatives. Indian Journal of Chemistry-Section B 2004, 43, 1302-1305 http://nopr.niscpr.res.in/ handle/123456789/18779.
https://doi.org/10.1002/chin.200442150

[27]. Pahlavani, E.; Kargar, H.; Sepehri Rad, N. A study on antitubercular and antimicrobial activity of isoniazid derivative. Zahedan J. Res. Med. Sci. 2015, 17.
https://doi.org/10.17795/zjrms1010

[28]. Oliveira, P.; Guidetti, B.; Chamayou, A.; André-Barrès, C.; Madacki, J.; Korduláková, J.; Mori, G.; Orena, B.; Chiarelli, L.; Pasca, M.; Lherbet, C.; Carayon, C.; Massou, S.; Baron, M.; Baltas, M. Mechanochemical synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity. Molecules 2017, 22, 1457.
https://doi.org/10.3390/molecules22091457

[29]. Rodrigues, F. A. R. Biological evaluation of isoniazid derivatives as an anticancer class. Sci. Pharm. 2014, 82, 21-28.
https://doi.org/10.3797/scipharm.1307-25

[30]. de Aguiar Cordeiro, R.; de Farias Marques, F. J.; de Aguiar Cordeiro, R.; da Silva, M. R.; Donato Maia Malaquias, A.; Silva de Melo, C. V.; Mafezoli, J.; Ferreira de Oliveira, M. da C.; Nogueira Brilhante, R. S.; Gadelha Rocha, M. F.; Pinheiro Gomes Bandeira, T. de J.; Costa Sidrim, J. J. Synthesis and Antifungal Activity In Vitro of Isoniazid Derivatives against Histoplasma capsulatum var. capsulatum. Antimicrob. Agents Chemother. 2014, 58, 2504-2511.
https://doi.org/10.1128/AAC.01654-13

[31]. Santos, D. C.; Henriques, R. R.; Junior, M. A. de A. L.; Farias, A. B.; Nogueira, T. L. do C.; Quimas, J. V. F.; Romeiro, N. C.; Silva, L. L. da; Souza, A. L. F. de Acylhydrazones as isoniazid derivatives with multi-target profiles for the treatment of Alzheimer's disease: Radical scavenging, myeloperoxidase/acetylcholinesterase inhibition and biometal chelation. Bioorg. Med. Chem. 2020, 28, 115470.
https://doi.org/10.1016/j.bmc.2020.115470

[32]. Sadawarte, G. P.; Rajput, J. D.; Kale, A. D.; Jagrut, V. B. Synthesis and Biological Evaluation of Five- and Six-Membered Heterocycles as an Anti-Diabetic Agent: An Overview. Journal of Chemical Reviews 2024, 331-352 10.48309/jcr.2024.437575.1303.

[33]. Sadawarte, G. P.; Halikar, N. K.; Kale, A. D.; Jagrut, V. B. Sodium oxalate mediate synthesis and α-amalyase inhibition assay of 5-substituted-3-phenyl-2-thioxoimidazolidin-4-ones. Polycycl. Aromat. Compd. 2024, 44, 521-527.
https://doi.org/10.1080/10406638.2023.2177681

[34]. Redkar, A. S.; Ramakrishnan, V. Antimicrobial Assay. In Springer Protocols Handbooks; Springer US: New York, NY, 2023; pp. 103-109.
https://doi.org/10.1007/978-1-0716-3405-9_15

[35]. Liu, Y.; Lu, Y.; Prashad, M.; Repič, O.; Blacklock, T. J. A practical and chemoselective reduction of nitroarenes to anilines using activated iron. Adv. Synth. Catal. 2005, 347, 217-219.
https://doi.org/10.1002/adsc.200404236

Supporting Agencies

Department of Chemistry, Faculty of Science, Bhagirathi Purnapatre Arts, Sitabai Mangilal Agrawal Science and Kasturbai Khandu Chaudhari Commerce College, Chalisgaon, Dist-Jalgaon 424101, Maharashtra State, India.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).