European Journal of Chemistry

Solvatochromism and ZINDO-IEFPCM solvation study on NHS ester activated AF514 and AF532 dyes: Evaluation of the dipole moments

Crossmark


Main Article Content

Mallikarjun Kalagouda Patil
Mare Goudar Kotresh
Tarimakki Shankar Tilakraj
Sanjeev Ramchandra Inamdar

Abstract

In this study, the solvatochromic effect on the photophysical properties of Alexa Fluor 514 (AF514) and Alexa Fluor 532 (AF532) fluorescent dyes is examined experimentally and computationally. To explore the solvatochromism and dipole moments, the steady-state absorption and fluorescence spectra of the dyes were measured in a series of organic solvents. Various solvent correlation models, like Bilot-Kawski, Lippert-Mataga, Bakhshiev, Kawski-Chamma-Viallet, and Reichardt microscopic solvent polarity parameters, were adapted to determine the dipole moments in their ground and excited states. For the computational investigation, the ground and excited-state geometries are optimized using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively, in vacuum. Furthermore, semiempirical ZINDO with the IEF-PCM model is used to evaluate the absorption transition energies of these dyes, which are comparatively studied in various solvent polarity along with experimental data. Additionally, the highest occupied molecular orbital energies (HOMO) and lowest unoccupied molecular orbital energies (LUMO), chemical softness, chemical hardness, energy gap, chemical potential, electronegativity, and molecular electrostatic potential (MEP) were estimated using DFT calculations at the CAM-B3LYP/6-311G(d,p) level, in gas phase. The experimental and computational results reveal that the singlet excited state dipole moment is greater than that of the ground state for the molecules considered. The angle between ground- and singlet excited-state dipole moments are found to be 0.50 and 0.49° making them almost parallel to each other. The natural bond orbital analysis (NBO) has been employed to investigate the stability of the molecule, inter- and intra-hyper-conjugative interactions and charge delocalization within the molecule.


icon graph This Abstract was viewed 914 times | icon graph Article PDF downloaded 387 times

How to Cite
(1)
Patil, M. K.; Kotresh, M. G.; Tilakraj, T. S.; Inamdar, S. R. Solvatochromism and ZINDO-IEFPCM Solvation Study on NHS Ester Activated AF514 and AF532 Dyes: Evaluation of the Dipole Moments. Eur. J. Chem. 2022, 13, 8-19.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Patil, M. K.; Kotresh, M. G.; Inamdar, L. S.; Inamdar, S. R. Multidonor Surface Energy Transfer from Alexa Fluor Dyes to Gold Nanoparticles: A Quest for Innovative Sensor Applications. J. Nanophotonics 2020, 14 (03), 036006.
https://doi.org/10.1117/1.JNP.14.036006

[2]. Conroy, E. M.; Li, J. J.; Kim, H.; Algar, W. R. Self-Quenching, Dimerization, and Homo-FRET in Hetero-FRET Assemblies with Quantum Dot Donors and Multiple Dye Acceptors. J. Phys. Chem. C Nanomater. Interfaces 2016, 120 (31), 17817-17828.
https://doi.org/10.1021/acs.jpcc.6b05886

[3]. Grate, J. W.; Mo, K.-F.; Shin, Y.; Vasdekis, A.; Warner, M. G.; Kelly, R. T.; Orr, G.; Hu, D.; Dehoff, K. J.; Brockman, F. J.; Wilkins, M. J. Alexa Fluor-Labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments. Bioconjug. Chem. 2015, 26 (3), 593-601.
https://doi.org/10.1021/acs.bioconjchem.5b00048

[4]. Kim, H.; Ng, C. Y. W.; Algar, W. R. Quantum Dot-Based Multidonor Concentric FRET System and Its Application to Biosensing Using an Excitation Ratio. Langmuir 2014, 30 (19), 5676-5685.
https://doi.org/10.1021/la501102x

[5]. Green, D. P. L.; Rawle, C. B. Analysis system and method, PCT Int. Appl. WO 2009082242, 2009.

[6]. Hauke, S. Method for detecting a chromosomal aberration, PCT Int. Appl. WO 2012150022, 2012.

[7]. Poulsen, T. S.; Poulsen, S. M.; Petersen, K. H. Methods for detecting chromosome aberrations, PCT Int. Appl. WO 2005111235, 2005

[8]. Tadross, M. R.; Park, S. A.; Veeramani, B.; Yue, D. T. Robust Approaches to Quantitative Ratiometric FRET Imaging of CFP/YFP Fluorophores under Confocal Microscopy. J. Microsc. 2009, 233 (1), 192-204.
https://doi.org/10.1111/j.1365-2818.2008.03109.x

[9]. Bestvater, F.; Spiess, E.; Stobrawa, G.; Hacker, M.; Feurer, T.; Porwol, T.; Berchner-Pfannschmidt, U.; Wotzlaw, C.; Acker, H. Two-Photon Fluorescence Absorption and Emission Spectra of Dyes Relevant for Cell Imaging. J. Microsc. 2002, 208 (Pt 2), 108-115.
https://doi.org/10.1046/j.1365-2818.2002.01074.x

[10]. Wayment, J. R.; Harris, J. M. Controlling Binding Site Densities on Glass Surfaces. Anal. Chem. 2006, 78 (22), 7841-7849.
https://doi.org/10.1021/ac061392g

[11]. Kawai, K.; Matsutani, E.; Maruyama, A.; Majima, T. Probing the Charge-Transfer Dynamics in DNA at the Single-Molecule Level. J. Am. Chem. Soc. 2011, 133 (39), 15568-15577.
https://doi.org/10.1021/ja206325m

[12]. Li, J.; Lee, J.-Y.; Yeung, E. S. Quantitative Screening of Single Copies of Human Papilloma Viral DNA without Amplification. Anal. Chem. 2006, 78 (18), 6490-6496.
https://doi.org/10.1021/ac060864o

[13]. Pihlasalo, S.; Engbert, A.; Martikkala, E.; Ylander, P.; Hänninen, P.; Härmä, H. Nonspecific Particle-Based Method with Two-Photon Excitation Detection for Sensitive Protein Quantification and Cell Counting. Anal. Chem. 2013, 85 (5), 2689-2696.
https://doi.org/10.1021/ac303069f

[14]. Kawski, A. Progress in photochemistry and photophysics, Ed. Rabek, J. F., CRC Press Boca Raton, Boston, Vol. V. pp. 1-47, 1992.

[15]. Liptay, W. Dipole Moments and Polarizabilities of Molecules in Excited Electronic States. In Excited States; Lim, E. C., Ed.; Elsevier, 1974; Vol. 1, pp 129-229.
https://doi.org/10.1016/B978-0-12-227201-1.50009-7

[16]. Czekalla, J. Elektrische Fluoreszenzpolarisation: Die Bestimmung von Dipolmomenten Angeregter Moleküle Aus Dem Polarisationsgrad Der Fluoreszenz in Starken Elektrischen Feldern. Ber. Bunsenges. Phys. Chem. 1960, 64 (10), 1221-1228.

[17]. Lombardi, J. R. Correlation between Structure and Dipole Moments in the Excited States of Substituted Benzenes. J. Am. Chem. Soc. 1970, 92 (7), 1831-1833.
https://doi.org/10.1021/ja00710a006

[18]. Baumann, W.; Rossiter, B.W.; Hamilton, J.F. (Ed.) Physical Methods of Chemistry, vol. 38, John Wiley and Sons, New York, 1989.

[19]. Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94 (8), 2319-2358.
https://doi.org/10.1021/cr00032a005

[20]. Suppan, P. Invited Review Solvatochromic Shifts: The Influence of the Medium on the Energy of Electronic States. J. Photochem. Photobiol. A Chem. 1990, 50 (3), 293-330.
https://doi.org/10.1016/1010-6030(90)87021-3

[21]. Mehata, M. S.; Singh, A. K.; Sinha, R. K. Experimental and Theoretical Study of Hydroxyquinolines: Hydroxyl Group Position Dependent Dipole Moment and Charge-Separation in the Photoexcited State Leading to Fluorescence. Methods Appl. Fluoresc. 2016, 4 (4), 045004.
https://doi.org/10.1088/2050-6120/4/4/045004

[22]. Patil, M. K.; Kotresh, M. G.; Inamdar, S. R. A Combined Solvatochromic Shift and TDDFT Study Probing Solute-Solvent Interactions of Blue Fluorescent Alexa Fluor 350 Dye: Evaluation of Ground and Excited State Dipole Moments. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 215, 142-152.
https://doi.org/10.1016/j.saa.2019.02.022

[23]. Mehata, M. S.; Singh, A. K.; Sinha, R. K. Investigation of Charge-Separation/Change in Dipole Moment of 7-Azaindole: Quantitative Measurement Using Solvatochromic Shifts and Computational Approaches. J. Mol. Liq. 2017, 231, 39-44.
https://doi.org/10.1016/j.molliq.2017.01.091

[24]. Young, J. W.; Pozun, Z. D.; Jordan, K. D.; Pratt, D. W. Excited Electronic State Mixing in 7-Azaindole. Quantitative Measurements Using the Stark Effect. J. Phys. Chem. B 2013, 117 (49), 15695-15700.
https://doi.org/10.1021/jp406412f

[25]. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley-VCH Verlag: Weinheim, Germany, 2006.

[26]. Bilot, L.; Kawski, A. Zur Theorie Des Einflusses von Lösungsmitteln Auf Die Elektronenspektren Der Moleküle. Z. Naturforsch. A 1962, 17 (7), 621-627.
https://doi.org/10.1515/zna-1962-0713

[27]. Lippert, E. Dipolmoment Und Elektronenstruktur von Angeregten Molekülen. Z. Naturforsch. A 1955, 10 (7), 541-545.
https://doi.org/10.1515/zna-1955-0707

[28]. Mataga, N.; Kaifu, Y.; Koizumi, M. Solvent Effects upon Fluorescence Spectra and the Dipolemoments of Excited Molecules. Bull. Chem. Soc. Jpn. 1956, 29 (4), 465-470.
https://doi.org/10.1246/bcsj.29.465

[29]. Bakhshiev, N. G. Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two component solutions, Opt. Spektrosk. 1964, 16, 821-832.

[30]. Chamma, A.; Viallet, P. Determination du moment dipolaire d'une moleculedans un etat excite singulet. Comptes Rendus de l' Academie des Sciences Paris Series C 1970, 270, 1901-1904.

[31]. Kawaski, A. Zur Iösungsmittelabhängigkeit der Wellenzahl von Elecktronenbanden lumineszierender Moleküle and über die Bestimmung der elektrischen Dipolomente im Anregungszustand, Acta Phys. Polon. 1966, 29, 507-518.

[32]. Kawski, A. On the Estimation of Excited-State Dipole Moments from Solvatochromic Shifts of Absorption and Fluorescence Spectra. Z. Naturforsch. A 2002, 57 (5), 255-262.
https://doi.org/10.1515/zna-2002-0509

[33]. Ravi, M.; Soujanya, T.; Samanta, A.; Radhakrishnan, T. P. Excited-State Dipole Moments of Some Coumarin Dyes from a Solvatochromic Method Using the Solvent Polarity Parameter, E N T. J. Chem. Soc. Faraday Trans 1995, 91 (17), 2739-2742.
https://doi.org/10.1039/ft9959102739

[34]. Suppan, P. Excited-State Dipole Moments from Absorption/ Fluorescence Solvatochromic Ratios. Chem. Phys. Lett. 1983, 94 (3), 272-275.
https://doi.org/10.1016/0009-2614(83)87086-9

[35]. Edward, J. T. Molecular Volumes and the Stokes-Einstein Equation. J. Chem. Educ. 1970, 47 (4), 261-270.
https://doi.org/10.1021/ed047p261

[36]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian 16, Gaussian, Inc., Wallingford CT, 2016.

[37]. Najare, M. S.; Patil, M. K.; Mantur, S.; Nadaf, A. A.; Inamdar, S. R.; Khazi, I. A. M. Highly Conjugated D-π-A-π-D Form of Novel Benzo[b] Thio-phene Substituted 1,3,4‑oxadiazole Derivatives; Thermal, Optical Properties, Solvatochromism and DFT Studies. J. Mol. Liq. 2018, 272, 507-519.
https://doi.org/10.1016/j.molliq.2018.09.094

[38]. Mishra, A. K.; Dogra, S. K. Effect of Solvents and PH on the Absorption and Fluorescence Spectra of 2-Phenylbenzimidazole. Spectrochim. Acta A 1983, 39 (7), 609-611.
https://doi.org/10.1016/0584-8539(83)80033-6

[39]. Gülseven Sıdır, Y.; Sıdır, İ. Solvent Effect on the Absorption and Fluorescence Spectra of 7-Acetoxy-6-(2,3-Dibromopropyl)-4,8-Dimethylcoumarin: Determination of Ground and Excited State Dipole Moments. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 102, 286-296.
https://doi.org/10.1016/j.saa.2012.10.018

[40]. Caricato, M.; Mennucci, B.; Tomasi, J. Solvent Polarity Scales Revisited: A ZINDO-PCM Study of the Solvatochromism of Betaine-30. Mol. Phys. 2006, 104 (5-7), 875-887.
https://doi.org/10.1080/00268970500417994

[41]. Caricato, M.; Mennucci, B.; Tomasi, J. Solvent Effects on the Electronic Spectra: An Extension of the Polarizable Continuum Model to the ZINDO Method. J. Phys. Chem. A 2004, 108 (29), 6248-6256.
https://doi.org/10.1021/jp048888r

[42]. Okulik, N.; Jubert, A. H. Theoretical Analysis of the Reactive Sites of Non-steroidal Anti-inflammatory Drugs, Internet Electron. J. Mol. Des. 2005, 4 (1), 17-30.

[43]. Fukui, K. Role of Frontier Orbitals in Chemical Reactions. Science 1982, 218 (4574), 747-754.
https://doi.org/10.1126/science.218.4574.747

[44]. Snehalatha, M.; Ravikumar, C.; Hubert Joe, I.; Sekar, N.; Jayakumar, V. S. Spectroscopic Analysis and DFT Calculations of a Food Additive Carmoisine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 72 (3), 654-662.
https://doi.org/10.1016/j.saa.2008.11.017

[45]. Weinhold, F.; Landis, C. R. Natural Bond Orbitals and Extensions of Localized Bonding Concepts. Chem. Educ. Res. Pr. 2001, 2 (2), 91-104.
https://doi.org/10.1039/B1RP90011K

[46]. Wazzan, N. A.; Al-Qurashi, O. S.; Faidallah, H. M. DFT/ and TD-DFT/PCM Calculations of Molecular Structure, Spectroscopic Characterization, NLO and NBO Analyses of 4-(4-Chlorophenyl) and 4-[4-(Dimethylamino) Phenyl]-2-Oxo-1,2,5,6-Tetrahydrobenzo[h] Qui-noline-3-Carbonitrile Dyes. J. Mol. Liq. 2016, 223, 29-47.
https://doi.org/10.1016/j.molliq.2016.07.146

[47]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88 (6), 899-926.
https://doi.org/10.1021/cr00088a005

Supporting Agencies

The University Grants Commission (UGC), New Delhi, India for the financial support under CPEPA (F.No.8-2/2008 (NS/PE)).
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).