European Journal of Chemistry

X-ray diffraction and Density Functional Theory based structural analyses of 2-phenyl-4-(prop-2-yn-1-yl)-1,2,4-triazolone

Crossmark


Main Article Content

Shilpa Mallappa Somagond
Ahmedraza Mavazzan
Suresh Fakkirappa Madar
Madivalagouda Sannaikar
Shankar Madan Kumar
Sanjeev Ramchandra Inamdar
Aravind Raviraj Nesaragi
Jagadeesh Prasad Dasappa
Ravindra Ramappa Kamble

Abstract

This study is composed of X-ray diffraction and Density Functional Theory (DFT) based molecular structural analyses of 2-phenyl-4-(prop-2-yn-1-yl)-2,4-dihydro-3H-1,2,4-triazol-3-one (2PPT). Crystal data for C11H9N3O: Monoclinic, space group P21/c (no. 14), a = 7.8975(2) Å, b = 11.6546(4) Å, c = 11.0648(3) Å, β = 105.212(2)°, = 982.74(5) Å3, Z = 4, T = 296.15 K, μ(MoKα) = 0.091 mm-1, Dcalc = 1.346 g/cm3, 13460 reflections measured (5.174° ≤ 2Θ ≤ 64.72°), 3477 unique (Rint = 0.0314, Rsigma = 0.0298) which were used in all calculations. The final R1 was 0.0470 (I > 2σ(I)) and wR2 was 0.1368 (all data). The experimentally determined data was supported by theoretically optimized calculations processed with the help of Hartree-Fock (HF) technique and Density Functional Theory with the 6-311G(d,p) basis set in the ground state. Geometrical parameters (Bond lengths and angles) as well as spectroscopic (FT-IR, 1H NMR, and 13C NMR) properties of 2PPT molecule has been optimized theoretically and compared with the experimentally obtained results. Hirshfeld surface analysis with 2D fingerprinting plots was used to figure out the possible and most significant intermolecular interactions. The electronic characterizations such as molecular electrostatic potential map (MEP) and Frontier molecular orbital (FMO) energies have been studied by DFT/B3LYP approach. The MEP imparted the detailed information regarding electronegative and electropositive regions across the molecule. The HOMO-LUMO energy gap as high as 5.3601 eV was found to be responsible for the high kinetic stability of the 2PPT.


icon graph This Abstract was viewed 769 times | icon graph Article PDF downloaded 372 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Somagond, S. M.; Mavazzan, A.; Madar, S. F.; Sannaikar, M.; Kumar, S. M.; Inamdar, S. R.; Nesaragi, A. R.; Dasappa, J. P.; Kamble, R. R. X-Ray Diffraction and Density Functional Theory Based Structural Analyses of 2-Phenyl-4-(prop-2-Yn-1-Yl)-1,2,4-Triazolone. Eur. J. Chem. 2021, 12, 459-468.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Liu, J.; Liu, Q.; Yang, X.; Xu, S.; Zhang, H.; Bai, R.; Yao, H.; Jiang, J.; Shen, M.; Wu, X.; Xu, J. Bioorg. Med. Chem. 2013, 21 (24), 7742-7751.
https://doi.org/10.1016/j.bmc.2013.10.017

[2]. Somagond, S. M.; Kamble, R. R.; Kattimani, P. P.; Joshi, S. D.; Dixit, S. R. Heterocycl. Comm. 2017, 23 (4), 317-324.
https://doi.org/10.1515/hc-2016-0073

[3]. Chandna, N.; Kapoor, J. K.; Grover, J.; Bairwa, K.; Goyal, V.; Jachak, S. M. New J. Chem. 2014, 38 (8), 3662-3672.
https://doi.org/10.1039/C4NJ00226A

[4]. Nesaragi, A. R.; Kamble, R. R.; Bayannavar, P. K.; Shaikh, S. K. J.; Hoolageri, S. R.; Kodasi, B.; Joshi, S. D.; Kumbar, V. M. Bioorg. Med. Chem. Lett. 2021, 41 (127984), 127984.
https://doi.org/10.1016/j.bmcl.2021.127984

[5]. Shaikh, S. K. J.; Sannaikar, M. S.; Kumbar, M. N.; Bayannavar, P. K.; Kamble, R. R.; Inamdar, S. R.; Joshi, S. D. ChemistrySelect 2018, 3 (16), 4448-4462.
https://doi.org/10.1002/slct.201702596

[6]. Liang, L.; Astruc, D. Coord. Chem. Rev. 2011, 255 (23-24), 2933-2945.
https://doi.org/10.1016/j.ccr.2011.06.028

[7]. Gimadiev, T. R.; Klimchuk, O.; Nugmanov, R. I.; Madzhidov, T. I.; Varnek, A. J. Mol. Struct. 2019, 1198 (126897), 126897.
https://doi.org/10.1016/j.molstruc.2019.126897

[8]. Popov, S. A.; Romanenko, G. V.; Reznikov, V. A. J. Mol. Struct. 2008, 872 (1), 30-39.
https://doi.org/10.1016/j.molstruc.2007.02.015

[9]. Naveen; Tittal, R. K.; Ghule, V. D.; Kumar, N.; Kumar, L.; Lal, K.; Kumar, A. J. Mol. Struct. 2020, 1209 (127951), 127951.
https://doi.org/10.1016/j.molstruc.2020.127951

[10]. Larsen, J. S.; Zahran, M. A.; Pedersen, E. B.; Nielsen, C. Monatsh. Chem. 1999, 130 (9), 1167-1173.
https://doi.org/10.1007/PL00010295

[11]. Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Chem. Rev. 2012, 112 (1), 289-320.
https://doi.org/10.1021/cr200107z

[12]. Jones, R. O. Rev. Mod. Phys. 2015, 87, 897-923.
https://doi.org/10.1103/RevModPhys.87.897

[13]. Hostaš, J.; Řezáč, J. J. Chem. Theory Comput. 2017, 13 (8), 3575-3585.
https://doi.org/10.1021/acs.jctc.7b00365

[14]. Kohn, W. Rev. Mod. Phys. 1999, 71 (5), 1253-1266.
https://doi.org/10.1103/RevModPhys.71.1253

[15]. Bayannavar, P. K.; Sannaikar, M. S.; Madan Kumar, S.; Inamdar, S. R.; Shaikh, S. K. J.; Nesaragi, A. R.; Kamble, R. R. J. Mol. Struct. 2019, 1179, 809-819.

[16]. Kattimani, P. P.; Kamble, R. R.; Dorababu, A.; Hunnur, R. K.; Kamble, A. A.; Devarajegowda, H. C. J. Heterocycl. Chem. 2017, 54 (4), 2258-2265.

[17]. Somagond, S. M.; Wari, M. N.; Shaikh, S. K. J.; Inamdar, S. R.; Shankar, M. K.; Prasad, D. J.; Kamble, R. R. Eur. J. Chem. 2019, 10 (4), 281-294.
https://doi.org/10.5155/eurjchem.10.4.281-294.1844

[18]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64 (Pt 1), 112-122.
https://doi.org/10.1107/S0108767307043930

[19]. Spek, A. L. Acta Crystallogr. A 1990, 46 (s1), 34-34.
https://doi.org/10.1111/j.1399-6576.1990.tb03209.x

[20]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Crystallogr. 2008, 41 (2), 466-470.
https://doi.org/10.1107/S0021889807067908

[21]. Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. J. Phys. Chem. A 2002, 106 (29), 6871-6875.
https://doi.org/10.1021/jp020715j

[22]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B Condens. Matter 1988, 37 (2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[23]. Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94 (9), 6081-6090.
https://doi.org/10.1063/1.460447

[24]. Ditchfield, R. J. Chem. Phys. 1972, 56 (11), 5688-5691.
https://doi.org/10.1063/1.1677088

[25]. Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112 (23), 8251-8260.
https://doi.org/10.1021/ja00179a005

[26]. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D.; Spackman, M. A. J. Appl. Cryst. 2021, 54 (3), 1006-1011.
https://doi.org/10.1107/S1600576721002910

[27]. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11 (1), 19-32.
https://doi.org/10.1039/B818330A

[28]. Turner, M. J.; McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. CrystEngComm 2011, 13 (6), 1804-1813.
https://doi.org/10.1039/C0CE00683A

[29]. Kumbar, M. N.; Kamble, R. R.; Dasappa, J. P.; Bayannavar, P. K.; Khamees, H. A.; Mahendra, M.; Joshi, S. D.; Dodamani, S.; Rasal, V. P.; Jalalpure, S. J. Mol. Struct. 2018, 1160, 63-72.
https://doi.org/10.1016/j.molstruc.2018.01.047

[30]. Glusker, J. P.; Lewis, M.; Rossi, M. Crystal Structure Analysis for Chemists and Biologists. VCH Publishers New York. 1994, ISBN 0-89573-273-4.

[31]. Şen, B.; Sevincek, R.; Beksultanova, N.; Dogan, Ö. J. Mol. Struct. 2018, 1173, 33-41.
https://doi.org/10.1016/j.molstruc.2018.06.085

[32]. Panini, P.; Mohan, T. P.; Gangwar, U.; Sankolli, R.; Chopra, D. CrystEngComm 2013, 15 (22), 4549-4564.
https://doi.org/10.1039/c3ce40278a

[33]. Sathish, M.; Meenakshi, G.; Xavier, S.; Sebastian, S.; Periandy, S.; Ahmad, N.; Jamalis, J.; Rosli, M.; Fun, H.-K. J. Mol. Struct. 2018, 1164, 420-437.
https://doi.org/10.1016/j.molstruc.2018.03.004

[34]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Chem. Commun. (Camb.) 2007, No. 37, 3814-3816.
https://doi.org/10.1039/b704980c

[35]. Spackman, M. A.; McKinnon, J. J. CrystEngComm 2002, 4 (66), 378-392.
https://doi.org/10.1039/B203191B

[36]. Singh, R. N.; Kumar, A.; Tiwari, R. K.; Rawat, P. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 113, 378-385.
https://doi.org/10.1016/j.saa.2013.04.121

[37]. Sjoberg, P.; Politzer, P. J. Phys. Chem. 1990, 94 (10), 3959-3961.
https://doi.org/10.1021/j100373a017

[38]. Lee, B.; Richards, F. M. J. Mol. Biol. 1971, 55 (3), 379-400.
https://doi.org/10.1016/0022-2836(71)90324-X

[39]. Weiner, P. K.; Langridge, R.; Blaney, J. M.; Schaefer, R.; Kollman, P. A. Proc. Natl. Acad. Sci. U. S. A. 1982, 79 (12), 3754-3758.
https://doi.org/10.1073/pnas.79.12.3754

[40]. Connolly, M. L. Science 1983, 221 (4612), 709-713.
https://doi.org/10.1126/science.6879170

[41]. Francl, M. M.; Hout, R. F., Jr; Hehre, W. J. J. Am. Chem. Soc. 1984, 106 (3), 563-570.
https://doi.org/10.1021/ja00315a018

[42]. Arteca, G. A.; Jammal, V. B.; Mezey, P. G.; Yadav, J. S.; Hermsmeier, M. A.; Gund, T. M. J. Mol. Graph. 1988, 6 (1), 45-53.
https://doi.org/10.1016/0263-7855(88)80061-4

[43]. Dunitz, J. D.; Filippini, G.; Gavezzotti, A. Tetrahedron 2000, 56 (36), 6595-6601.
https://doi.org/10.1016/S0040-4020(00)00460-9

[44]. Bondi, A. Van Der Waals Volumes and Radii. J. Phys. Chem. 1964, 68 (3), 441-451.
https://doi.org/10.1021/j100785a001

[45]. Vasanthakumari, R.; Nirmala, W.; Sagadevan, S.; Mugeshini, S.; Rajeswari, N.; Balu, R.; Santhakumari, R. J. Mol. Struct. 2021, 1239 (130449), 130449.
https://doi.org/10.1016/j.molstruc.2021.130449

[46]. Naresh, P.; Pramodh, B.; Naveen, S.; Ganguly, S.; Panda, J.; Sunitha, K.; Maniukiewicz, W.; Lokanath, N. K. J. Mol. Struct. 2021, 1236 (130228), 130228.
https://doi.org/10.1016/j.molstruc.2021.130228

Supporting Agencies

University Grants Commission [F. No. 14-3/2012(NS/PE) Dated, 14-03-2012] , New Delhi, India.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX
publications
0
supporting
0
mentioning
0
contrasting
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Downloads and views

Downloads

Metrics

PDF views
372
Dec 31 '21Jan 01 '22Jan 04 '22Jan 07 '22Jan 10 '22Jan 13 '22Jan 16 '22Jan 19 '22Jan 22 '22Jan 25 '22Jan 28 '225.0
| |
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).