European Journal of Chemistry

In vitro anticancer, antioxidant and DNA-binding study of the bioactive ingredient of clove and its isolation

Crossmark


Main Article Content

Mohammad Suhail

Abstract

Cancer cannot be ignored since it is the most dangerous disease because it is a major cause of death globally with 15% mortality. Researchers have been attracted to the plant-based solution of this havoc. Among all plants, Syzygium aromaticum has shown tremendous results in many aspects such as anticancer, antioxidant, and others.  All the studies that took place, were done on the plant extract only. No one goes further than this. Hence, an advanced computational chemistry-based method for the characterization and identification of the bioactive ingredients isolated from cloves was developed for the first time. First, different extracts of Syzygium aromaticum plant buds were obtained using different solvents (Water, methanol, chloroform, ethyl acetate, 50% ethanol, and hexane), then each extract was evaluated for its anticancer activity against A549 and H1299 lung cancer cell lines. The fractionation of the most active extract was done using flash chromatography. After that, anticancer evaluation of every fraction was done again. One of the obtained fractions showed the highest anticancer activity. For the identification of the most active fraction the experimental IR and NMR data of it was taken and compared with the computational IR and NMR data of 19 compounds found in cloves. Furthermore, DNA binding affinity and antioxidant activity of the fraction showing the highest anticancer activity were also studied. The presented method of the isolation of the most bioactive ingredient will be the most helpful for all the scientists working in the field of separation science and phytomedicine.


icon graph This Abstract was viewed 689 times | icon graph Article PDF downloaded 325 times

How to Cite
(1)
Suhail, M. In Vitro Anticancer, Antioxidant and DNA-Binding Study of the Bioactive Ingredient of Clove and Its Isolation. Eur. J. Chem. 2022, 13, 33-40.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Suhail, M.; Ali, I. An Advanced Computational Evaluation for the Most Biologically Active Enantiomers of Chiral Anti-Cancer Agents. Anticancer Agents Med. Chem. 2021, 21 (15), 2075-2081.
https://doi.org/10.2174/1871520621999201230233811

[2]. Sanghani, H., V.; H Ganatra, S.; Pande, R. Molecular - Docking Studies of Potent Anticancer Agent. J. Comput. Sci. Syst. Biol. 2012, 05 (01).
https://doi.org/10.4172/jcsb.1000085

[3]. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68 (6), 394-424.
https://doi.org/10.3322/caac.21492

[4]. Ali, I.; Suhail, M.; Naqshbandi, M. F.; Fazil, M.; Ahmad, B.; Sayeed, A. Role of Unani Medicines in Cancer Control and Management. Curr. Drug Ther. 2019, 14 (2), 92-113.
https://doi.org/10.2174/1574885513666180907103659

[5]. Ali, I.; Nadeem Lone, M.; Suhail, M.; Danish Mukhtar, S.; Asnin, L. Advances in Nanocarriers for Anticancer Drugs Delivery. Curr. Med. Chem. 2016, 23 (20), 2159-2187.
https://doi.org/10.2174/0929867323666160405111152

[6]. Pourshahidi, S.; Sheykhbahaei, N. Effectiveness of Herbal Based Medications in the Treatment of Oral Lichen Planus: A Review Article. J. Herb. Med. 2021, 29 (100458), 100458.
https://doi.org/10.1016/j.hermed.2021.100458

[7]. Kumari, S.; Seth, A.; Sharma, S.; Attri, C. A Holistic Overview of Different Species of Potentilla a Medicinally Important Plant along with Their Pharmaceutical Significance: A Review. J. Herb. Med. 2021, 29 (100460), 100460.
https://doi.org/10.1016/j.hermed.2021.100460

[8]. Khedmat, L.; Mojtahedi, S. Y.; Moienafshar, A. Recent Clinical Evidence in the Herbal Therapy of Neonatal Jaundice in Iran: A Review. J. Herb. Med. 2021, 29 (100457), 100457.
https://doi.org/10.1016/j.hermed.2021.100457

[9]. Imran, A.; Suhail, M.; Fazil, M.; Bilal, A.; Ahmad, S.; Farooq, N.; Amir. A. Anti-cancer and Anti-oxidant Potencies of Cuscuta reflexa Roxb. Plant Extracts. Am. J. Adv. Drug Deliv. 2020, 8 (1), 1-11.

[10]. Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S. A.; Afridi, S.; Shinwari, Z. K. Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspects. Biomolecules 2019, 10 (1), 47.
https://doi.org/10.3390/biom10010047

[11]. Barboza, J. N.; da Silva Maia Bezerra Filho, C.; Silva, R. O.; Medeiros, J. V. R.; de Sousa, D. P. An Overview on the Anti-Inflammatory Potential and Antioxidant Profile of Eugenol. Oxid. Med. Cell. Longev. 2018, 2018, 3957262.
https://doi.org/10.1155/2018/3957262

[12]. Liu, H.; Schmitz, J. C.; Wei, J.; Cao, S.; Beumer, J. H.; Strychor, S.; Cheng, L.; Liu, M.; Wang, C.; Wu, N.; Zhao, X.; Zhang, Y.; Liao, J.; Chu, E.; Lin, X. Clove Extract Inhibits Tumor Growth and Promotes Cell Cycle Arrest and Apoptosis. Oncol. Res. 2014, 21 (5), 247-259.
https://doi.org/10.3727/096504014X13946388748910

[13]. Hemalatha, R.; Nivetha, P.; Mohanapriya, C.; Sharmila, G.; Muthukumaran, C.; Gopinath, M. Phytochemical Composition, GC-MS Analysis, in Vitro Antioxidant and Antibacterial Potential of Clove Flower Bud (Eugenia Caryophyllus) Methanolic Extract. J. Food Sci. Technol. 2016, 53 (2), 1189-1198.
https://doi.org/10.1007/s13197-015-2108-5

[14]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. , Gaussian 09, Revision A. 02, Wallingford CT, 2009.

[15]. GaussView, Version 6, Dennington, R.; Keith, T. A.; Millam, J. M. Semichem Inc., Shawnee Mission, KS, 2016.

[16]. Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65 (1-2), 55-63.
https://doi.org/10.1016/0022-1759(83)90303-4

[17]. Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant Activity of Flavonoids from Licania Licaniaeflora. J. Ethnopharmacol. 2002, 79 (3), 379-381.
https://doi.org/10.1016/S0378-8741(01)00413-5

[18]. Wolfe, A.; Shimer, G. H., Jr; Meehan, T. Polycyclic Aromatic Hydrocarbons Physically Intercalate into Duplex Regions of Denatured DNA. Biochemistry 1987, 26 (20), 6392-6396.
https://doi.org/10.1021/bi00394a013

[19]. Pratviel, G.; Bernadou, J.; Meunier, B. DNA and RNA Cleavage by Metal Complexes. In Advances in Inorganic Chemistry; Elsevier, 1998; pp 251-312.
https://doi.org/10.1016/S0898-8838(08)60027-6

[20]. Becke, A. D. Density‐functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652.
https://doi.org/10.1063/1.464913

[21]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter 1988, 37 (2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[22]. Arjmand, F.; Aziz, M.; Chauhan, M. Synthesis, Spectroscopic Studies of New Water-Soluble Co(II) and Cu(II) Macrocyclic Complexes of 4,15-Bis(2-Hydroxyethyl)-2,4,6,13,15,17-Hexaazatricyclodocosane: Their Interaction Studies with Calf Thymus DNA and Guanosine 5′ Monophosphate. J Incl Phenom Macrocycl Chem 2008, 61 (3-4), 265-278.
https://doi.org/10.1007/s10847-008-9417-5

[23]. Sun, Y.; Zhang, H.; Bi, S.; Zhou, X.; Wang, L.; Yan, Y. Studies on the Arctiin and Its Interaction with DNA by Spectral Methods. J. Lumin. 2011, 131 (11), 2299-2306.
https://doi.org/10.1016/j.jlumin.2011.04.036

Supporting Agencies

The Central Instrumentation Facility, Jamia Millia Islamia (A Central University), New Delhi, India.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).