European Journal of Chemistry 2022, 13(2), 224-229 | doi: https://doi.org/10.5155/eurjchem.13.2.224-229.2237 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

A theoretical density functional theory calculation-based analysis of conformers of p-xylene


Mohammad Suhail (1,*) orcid

(1) Department of Chemistry, Siddhartha Degree College, Aakhlaur Kheri (Saharanpur), Uttar Pradesh-251311, India
(*) Corresponding Author

Received: 03 Mar 2022 | Revised: 16 Apr 2022 | Accepted: 26 Apr 2022 | Published: 30 Jun 2022 | Issue Date: June 2022

Abstract


Different conformers of many aliphatic compounds such as ethane, butane, cyclohexane and their derivatives have been studied to find the most reactive as well as the most stable conformer. For the first time, two conformers of p-xylene were found using theoretical DFT calculation and the vibrational modes, Raman activity, and other spectra of each conformer were also studied. The most significant data that clearly distinguished both conformers was depolarization spectra. Besides, many other parameters were found different in both conformers of p-xylene such as Mulliken charge’s, optimization energy, HOMO’s of both conformers. Also, the presented study predicts, why eclipsed conformer of p-xylene is more reactive than staggered conformer. The reactivity of the eclipsed form is explained on the basis of HOMO-LUMO energy gap. Also, the presented study opens the door for future work to be done because each conformer can produce a specific product. Moreover, the rates of reaction are also dependent on the conformers and their relative stability.


Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


Eclipsed conformer; Staggered conformer; Depolarization spectra; Vibrational spectroscopy; Conformers of p-xylene; Density Functional Theory (DFT)

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.13.2.224-229.2237

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 240 times | icon graph PDF Article downloaded 74 times


References


[1]. Roos, G.; Roos, C. Isomers and Stereochemistry. In Organic Chemistry Concepts; Elsevier, 2015; pp. 43-54.
https://doi.org/10.1016/B978-0-12-801699-2.00003-1

[2]. Kazerouni, M. R.; Hedberg, L.; Hedberg, K. Conformational analysis. 21. Ethane-1,2-diol. An electron-diffraction investigation, augmented by rotational constants and ab initio calculations, of the molecular structure, conformational composition, SQM vibrational force field, and anti-gauche energy difference with implications for internal hydrogen bonding. J. Am. Chem. Soc. 1997, 119, 8324-8331.
https://doi.org/10.1021/ja9708631

[3]. Balci, K.; Yapar, G.; Akkaya, Y.; Akyuz, S.; Koch, A.; Kleinpeter, E. A conformational analysis and vibrational spectroscopic investigation on 1,2-bis(o-carboxyphenoxy) ethane molecule. Vib. Spectrosc. 2012, 58, 27-43.
https://doi.org/10.1016/j.vibspec.2011.11.011

[4]. Balabin, R. M. Enthalpy difference between conformations of normal alkanes: Raman spectroscopy study of n-pentane and n-butane. J. Phys. Chem. A 2009, 113, 1012-1019.
https://doi.org/10.1021/jp809639s

[5]. Chapman, D. M.; Hester, R. E. ab initio conformational analysis of 1,4-dioxane. J. Phys. Chem. A 1997, 101, 3382-3387.
https://doi.org/10.1021/jp962932o

[6]. Arivazhagan, M.; Meenakshi, R. Vibrational spectroscopic studies and DFT calculations of 4-bromo-o-xylene. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 91, 419-430.
https://doi.org/10.1016/j.saa.2012.01.062

[7]. Arjunan, V.; Balamourougane, P. S.; Saravanan, I.; Mohan, S. Investigation of the structural and harmonic vibrational properties of 2-nitro-, 4-nitro- and 5-nitro-m-xylene by ab initio and density functional theory. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 74, 798-807.
https://doi.org/10.1016/j.saa.2009.08.020

[8]. Arjunan, V.; Saravanan, I.; Mythili, C. V.; Kalaivani, M.; Mohan, S. A comparative study on vibrational, conformational and electronic structure of α,α′-diol-o-xylene, α,α′-diol-m-xylene and α,α′-diol-p-xylene. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 92, 1-15.
https://doi.org/10.1016/j.saa.2012.02.029

[9]. Ali, I.; Suhail, M.; ALOthman, Z. A.; Al-Mohaimeed, A. M.; Alwarthan, A. Chiral resolution of four stereomers and simulation studies of newly synthesized antibacterial agents having two chiral centers. Sep. Purif. Technol. 2020, 236, 116256.
https://doi.org/10.1016/j.seppur.2019.116256

[10]. Dreiding, A. S. Conformational Analysis. Von E. L. Eliel, N. L. Allinger, S. J. Angyal und G. A. Morrison. John Wiley & Sons, Ind., New York-London 1965. 2. Aufl,. XIII, 524 S., zahlr. Abb., geh. sh. 113/-. Angew. Chem. Weinheim Bergstr. Ger. 1967, 79, 387-388.
https://doi.org/10.1002/ange.19670790821

[11]. Curtin-Hammett principle. In The IUPAC Compendium of Chemical Terminology; International Union of Pure and Applied Chemistry (IUPAC): Research Triangle Park, NC, 2014.

[12]. Schneider, H. J.; Schmidt, G.; Thomas, F. Alicyclic reaction mechanisms. 6. Strain-reactivity relations as a tool for the localization of transition states. Equilibria, solvolysis, and redox reactions of substituted cycloalkanes. J. Am. Chem. Soc. 1983, 105, 3556-3563.
https://doi.org/10.1021/ja00349a031

[13]. Kepceoglu, A.; Gundogdu, Y.; Dereli, O.; Kilic, H. S. Molecular structure and TD-DFT study of the xylene isomers. Gazi University Journal of Science 2019, 32, 300-308.

[14]. Durig, J. R.; Cox, F. O. Conformational analysis, barriers to internal rotation and vibrational assignment for dimethylethylamine. J. Mol. Struct. 1983, 95, 85-103.
https://doi.org/10.1016/0022-2860(82)90135-1

[15]. Durig, J. R.; Bist, H. D.; Little, T. S. Vibrational spectra and confor-mational stability of cyclopropylmethyl ketone. J. Mol. Struct. 1984, 116, 346-359.
https://doi.org/10.1016/0022-2860(84)87046-5

[16]. Piaggio, P.; Francese, P. G.; Masetti, G.; Dellepiane, G. Conformational analysis of n-perfluoroalkanes: n-C4F10 and n-C6F14. J. Mol. Struct. 1975, 26, 421-428.
https://doi.org/10.1016/0022-2860(75)80026-3

[17]. Durig, J. R.; Berry, R. J.; Groner, P. Vibrational spectra and assignments, normal coordinate analyses, ab initio calculations, and conformational stability of the propenoyl halides. J. Chem. Phys. 1987, 87, 6303-6322.
https://doi.org/10.1063/1.453460

[18]. Srivastav, G.; Yadav, B.; Yadav, R. K.; Yadav, R. A. DFT studies of molecular structures conformers and vibrational characteristics of sulfanilamide. Comput. Theor. Chem. 2019, 1167, 112588.
https://doi.org/10.1016/j.comptc.2019.112588

[19]. Kanimozhi, R.; Arjunan, V.; Mohan, S. Conformations, structure, vibrations, chemical shift and reactivity properties of isoquinoline-1-carboxylic acid and isoquinoline-3-carboxylic acid - Comparative investigations by experimental and theoretical techniques. J. Mol. Struct. 2020, 1207, 127841.
https://doi.org/10.1016/j.molstruc.2020.127841

[20]. Johnson, B. G.; Frisch, M. J. Analytic second derivatives of the gradient-corrected density functional energy. Effect of quadrature weight derivatives. Chem. Phys. Lett. 1993, 216, 133-140.
https://doi.org/10.1016/0009-2614(93)E1238-C

[21]. Johnson, B. G.; Fisch, M. J. An implementation of analytic second derivatives of the gradient‐corrected density functional energy. J. Chem. Phys. 1994, 100, 7429-7442.
https://doi.org/10.1063/1.466887

[22]. Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Stephens, P. J. Ab initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory. Chem. Phys. Lett. 1996, 252, 211-220.
https://doi.org/10.1016/0009-2614(96)00154-6

[23]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc. , Wallingford CT, 2004.

[24]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc.; Shawnee Mission, KS, 2016.

[25]. Suhail, M.; Mukhtar, S. D.; Ali, I.; Ansari, A.; Arora, S. Theoretical DFT study of Cannizzaro reaction mechanism: A mini perspective. Eur. J. Chem. 2020, 11, 139-144.
https://doi.org/10.5155/eurjchem.11.2.139-144.1975

[26]. Suhail, M. The target determination and the mechanism of action of chiral-antimalarial drugs: A docking approach. J. Comput. Biophys. Chem. 2021, 20, 501-516.
https://doi.org/10.1142/S2737416521500290

[27]. Suhail, M. A computational and literature-based evaluation for a combination of chiral anti-CoV drugs to block and eliminate SARS-CoV-2 safely. J. Comput. Biophys. Chem. 2021, 20, 417-432.
https://doi.org/10.1142/S2737416521500228

[28]. Suhail, M.; Ali, I. An advanced computational evaluation for the most biologically active enantiomers of chiral anti-cancer agents. Anticancer Agents Med. Chem. 2021, 21, 2075-2081.
https://doi.org/10.2174/1871520621999201230233811

[29]. Ali, I.; Lone, M. N.; Suhail, M.; AL-Othman, Z. A.; Alwarthan, A. Enantiomeric resolution and simulation studies of four enantiomers of 5-bromo-3-ethyl-3-(4-nitrophenyl)-piperidine-2,6-dione on a Chiralpak IA column. RSC Adv. 2016, 6, 14372-14380.
https://doi.org/10.1039/C5RA26462F

[30]. Alajmi, M. F.; Hussain, A.; Suhail, M.; Mukhtar, S. D.; Sahoo, D. R.; Asnin, L.; Ali, I. Chiral HPLC separation and modeling of four stereomers of DL-leucine-DL-tryptophan dipeptide on amylose chiral column: Modeling of four stereomers. Chirality 2016, 28, 642-648.
https://doi.org/10.1002/chir.22624

[31]. Ali, I.; Suhail, M.; Asnin, L. Chiral separation and modeling of quinolones on teicoplanin macrocyclic glycopeptide antibiotics CSP. Chirality 2018, 30, 1304-1311.
https://doi.org/10.1002/chir.23024

[32]. Ali, I.; Suhail, M.; Alothman, Z. A.; Alwarthan, A. Chiral separation and modeling of baclofen, bupropion, and etodolac profens on amylose reversed phase chiral column. Chirality 2017, 29, 386-397.
https://doi.org/10.1002/chir.22717

[33]. Kuppens, T.; Vandyck, K.; van der Eycken, J.; Herrebout, W.; van der Veken, B.; Bultinck, P. A DFT conformational analysis and VCD study on methyl tetrahydrofuran-2-carboxylate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 67, 402-411.
https://doi.org/10.1016/j.saa.2006.07.034

[34]. Becke, A. D. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys. 1992, 96, 2155-2160.
https://doi.org/10.1063/1.462066

[35]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785


How to cite


Suhail, M. Eur. J. Chem. 2022, 13(2), 224-229. doi:10.5155/eurjchem.13.2.224-229.2237
Suhail, M. A theoretical density functional theory calculation-based analysis of conformers of p-xylene. Eur. J. Chem. 2022, 13(2), 224-229. doi:10.5155/eurjchem.13.2.224-229.2237
Suhail, M. (2022). A theoretical density functional theory calculation-based analysis of conformers of p-xylene. European Journal of Chemistry, 13(2), 224-229. doi:10.5155/eurjchem.13.2.224-229.2237
Suhail, Mohammad. "A theoretical density functional theory calculation-based analysis of conformers of p-xylene." European Journal of Chemistry [Online], 13.2 (2022): 224-229. Web. 31 May. 2023
Suhail, Mohammad. "A theoretical density functional theory calculation-based analysis of conformers of p-xylene" European Journal of Chemistry [Online], Volume 13 Number 2 (30 June 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.13.2.224-229.2237


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2022, 13(2), 224-229 | doi: https://doi.org/10.5155/eurjchem.13.2.224-229.2237 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.