European Journal of Chemistry

A theoretical density functional theory calculation-based analysis of conformers of p-xylene

Crossmark


Main Article Content

Mohammad Suhail

Abstract

Different conformers of many aliphatic compounds such as ethane, butane, cyclohexane and their derivatives have been studied to find the most reactive as well as the most stable conformer. For the first time, two conformers of p-xylene were found using theoretical DFT calculation and the vibrational modes, Raman activity, and other spectra of each conformer were also studied. The most significant data that clearly distinguished both conformers was depolarization spectra. Besides, many other parameters were found different in both conformers of p-xylene such as Mulliken charge’s, optimization energy, HOMO’s of both conformers. Also, the presented study predicts, why eclipsed conformer of p-xylene is more reactive than staggered conformer. The reactivity of the eclipsed form is explained on the basis of HOMO-LUMO energy gap. Also, the presented study opens the door for future work to be done because each conformer can produce a specific product. Moreover, the rates of reaction are also dependent on the conformers and their relative stability.


icon graph This Abstract was viewed 583 times | icon graph Article PDF downloaded 300 times

How to Cite
(1)
Suhail, M. A Theoretical Density Functional Theory Calculation-Based Analysis of Conformers of P-Xylene. Eur. J. Chem. 2022, 13, 224-229.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Roos, G.; Roos, C. Isomers and Stereochemistry. In Organic Chemistry Concepts; Elsevier, 2015; pp. 43-54.
https://doi.org/10.1016/B978-0-12-801699-2.00003-1

[2]. Kazerouni, M. R.; Hedberg, L.; Hedberg, K. Conformational analysis. 21. Ethane-1,2-diol. An electron-diffraction investigation, augmented by rotational constants and ab initio calculations, of the molecular structure, conformational composition, SQM vibrational force field, and anti-gauche energy difference with implications for internal hydrogen bonding. J. Am. Chem. Soc. 1997, 119, 8324-8331.
https://doi.org/10.1021/ja9708631

[3]. Balci, K.; Yapar, G.; Akkaya, Y.; Akyuz, S.; Koch, A.; Kleinpeter, E. A conformational analysis and vibrational spectroscopic investigation on 1,2-bis(o-carboxyphenoxy) ethane molecule. Vib. Spectrosc. 2012, 58, 27-43.
https://doi.org/10.1016/j.vibspec.2011.11.011

[4]. Balabin, R. M. Enthalpy difference between conformations of normal alkanes: Raman spectroscopy study of n-pentane and n-butane. J. Phys. Chem. A 2009, 113, 1012-1019.
https://doi.org/10.1021/jp809639s

[5]. Chapman, D. M.; Hester, R. E. ab initio conformational analysis of 1,4-dioxane. J. Phys. Chem. A 1997, 101, 3382-3387.
https://doi.org/10.1021/jp962932o

[6]. Arivazhagan, M.; Meenakshi, R. Vibrational spectroscopic studies and DFT calculations of 4-bromo-o-xylene. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 91, 419-430.
https://doi.org/10.1016/j.saa.2012.01.062

[7]. Arjunan, V.; Balamourougane, P. S.; Saravanan, I.; Mohan, S. Investigation of the structural and harmonic vibrational properties of 2-nitro-, 4-nitro- and 5-nitro-m-xylene by ab initio and density functional theory. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 74, 798-807.
https://doi.org/10.1016/j.saa.2009.08.020

[8]. Arjunan, V.; Saravanan, I.; Mythili, C. V.; Kalaivani, M.; Mohan, S. A comparative study on vibrational, conformational and electronic structure of α,α′-diol-o-xylene, α,α′-diol-m-xylene and α,α′-diol-p-xylene. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 92, 1-15.
https://doi.org/10.1016/j.saa.2012.02.029

[9]. Ali, I.; Suhail, M.; ALOthman, Z. A.; Al-Mohaimeed, A. M.; Alwarthan, A. Chiral resolution of four stereomers and simulation studies of newly synthesized antibacterial agents having two chiral centers. Sep. Purif. Technol. 2020, 236, 116256.
https://doi.org/10.1016/j.seppur.2019.116256

[10]. Dreiding, A. S. Conformational Analysis. Von E. L. Eliel, N. L. Allinger, S. J. Angyal und G. A. Morrison. John Wiley & Sons, Ind., New York-London 1965. 2. Aufl,. XIII, 524 S., zahlr. Abb., geh. sh. 113/-. Angew. Chem. Weinheim Bergstr. Ger. 1967, 79, 387-388.
https://doi.org/10.1002/ange.19670790821

[11]. Curtin-Hammett principle. In The IUPAC Compendium of Chemical Terminology; International Union of Pure and Applied Chemistry (IUPAC): Research Triangle Park, NC, 2014.

[12]. Schneider, H. J.; Schmidt, G.; Thomas, F. Alicyclic reaction mechanisms. 6. Strain-reactivity relations as a tool for the localization of transition states. Equilibria, solvolysis, and redox reactions of substituted cycloalkanes. J. Am. Chem. Soc. 1983, 105, 3556-3563.
https://doi.org/10.1021/ja00349a031

[13]. Kepceoglu, A.; Gundogdu, Y.; Dereli, O.; Kilic, H. S. Molecular structure and TD-DFT study of the xylene isomers. Gazi University Journal of Science 2019, 32, 300-308.

[14]. Durig, J. R.; Cox, F. O. Conformational analysis, barriers to internal rotation and vibrational assignment for dimethylethylamine. J. Mol. Struct. 1983, 95, 85-103.
https://doi.org/10.1016/0022-2860(82)90135-1

[15]. Durig, J. R.; Bist, H. D.; Little, T. S. Vibrational spectra and confor-mational stability of cyclopropylmethyl ketone. J. Mol. Struct. 1984, 116, 346-359.
https://doi.org/10.1016/0022-2860(84)87046-5

[16]. Piaggio, P.; Francese, P. G.; Masetti, G.; Dellepiane, G. Conformational analysis of n-perfluoroalkanes: n-C4F10 and n-C6F14. J. Mol. Struct. 1975, 26, 421-428.
https://doi.org/10.1016/0022-2860(75)80026-3

[17]. Durig, J. R.; Berry, R. J.; Groner, P. Vibrational spectra and assignments, normal coordinate analyses, ab initio calculations, and conformational stability of the propenoyl halides. J. Chem. Phys. 1987, 87, 6303-6322.
https://doi.org/10.1063/1.453460

[18]. Srivastav, G.; Yadav, B.; Yadav, R. K.; Yadav, R. A. DFT studies of molecular structures conformers and vibrational characteristics of sulfanilamide. Comput. Theor. Chem. 2019, 1167, 112588.
https://doi.org/10.1016/j.comptc.2019.112588

[19]. Kanimozhi, R.; Arjunan, V.; Mohan, S. Conformations, structure, vibrations, chemical shift and reactivity properties of isoquinoline-1-carboxylic acid and isoquinoline-3-carboxylic acid - Comparative investigations by experimental and theoretical techniques. J. Mol. Struct. 2020, 1207, 127841.
https://doi.org/10.1016/j.molstruc.2020.127841

[20]. Johnson, B. G.; Frisch, M. J. Analytic second derivatives of the gradient-corrected density functional energy. Effect of quadrature weight derivatives. Chem. Phys. Lett. 1993, 216, 133-140.
https://doi.org/10.1016/0009-2614(93)E1238-C

[21]. Johnson, B. G.; Fisch, M. J. An implementation of analytic second derivatives of the gradient‐corrected density functional energy. J. Chem. Phys. 1994, 100, 7429-7442.
https://doi.org/10.1063/1.466887

[22]. Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Stephens, P. J. Ab initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory. Chem. Phys. Lett. 1996, 252, 211-220.
https://doi.org/10.1016/0009-2614(96)00154-6

[23]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc. , Wallingford CT, 2004.

[24]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc.; Shawnee Mission, KS, 2016.

[25]. Suhail, M.; Mukhtar, S. D.; Ali, I.; Ansari, A.; Arora, S. Theoretical DFT study of Cannizzaro reaction mechanism: A mini perspective. Eur. J. Chem. 2020, 11, 139-144.
https://doi.org/10.5155/eurjchem.11.2.139-144.1975

[26]. Suhail, M. The target determination and the mechanism of action of chiral-antimalarial drugs: A docking approach. J. Comput. Biophys. Chem. 2021, 20, 501-516.
https://doi.org/10.1142/S2737416521500290

[27]. Suhail, M. A computational and literature-based evaluation for a combination of chiral anti-CoV drugs to block and eliminate SARS-CoV-2 safely. J. Comput. Biophys. Chem. 2021, 20, 417-432.
https://doi.org/10.1142/S2737416521500228

[28]. Suhail, M.; Ali, I. An advanced computational evaluation for the most biologically active enantiomers of chiral anti-cancer agents. Anticancer Agents Med. Chem. 2021, 21, 2075-2081.
https://doi.org/10.2174/1871520621999201230233811

[29]. Ali, I.; Lone, M. N.; Suhail, M.; AL-Othman, Z. A.; Alwarthan, A. Enantiomeric resolution and simulation studies of four enantiomers of 5-bromo-3-ethyl-3-(4-nitrophenyl)-piperidine-2,6-dione on a Chiralpak IA column. RSC Adv. 2016, 6, 14372-14380.
https://doi.org/10.1039/C5RA26462F

[30]. Alajmi, M. F.; Hussain, A.; Suhail, M.; Mukhtar, S. D.; Sahoo, D. R.; Asnin, L.; Ali, I. Chiral HPLC separation and modeling of four stereomers of DL-leucine-DL-tryptophan dipeptide on amylose chiral column: Modeling of four stereomers. Chirality 2016, 28, 642-648.
https://doi.org/10.1002/chir.22624

[31]. Ali, I.; Suhail, M.; Asnin, L. Chiral separation and modeling of quinolones on teicoplanin macrocyclic glycopeptide antibiotics CSP. Chirality 2018, 30, 1304-1311.
https://doi.org/10.1002/chir.23024

[32]. Ali, I.; Suhail, M.; Alothman, Z. A.; Alwarthan, A. Chiral separation and modeling of baclofen, bupropion, and etodolac profens on amylose reversed phase chiral column. Chirality 2017, 29, 386-397.
https://doi.org/10.1002/chir.22717

[33]. Kuppens, T.; Vandyck, K.; van der Eycken, J.; Herrebout, W.; van der Veken, B.; Bultinck, P. A DFT conformational analysis and VCD study on methyl tetrahydrofuran-2-carboxylate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 67, 402-411.
https://doi.org/10.1016/j.saa.2006.07.034

[34]. Becke, A. D. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys. 1992, 96, 2155-2160.
https://doi.org/10.1063/1.462066

[35]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

Supporting Agencies

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).