European Journal of Chemistry 2022, 13(1), 41-48 | doi: https://doi.org/10.5155/eurjchem.13.1.41-48.2168 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Efficient, environment friendly and regioselective synthetic strategy for 2/3-substituted-8,8-dimethyl-8,9-dihydropyrazolo[1,5-a]quinazolin-6(7H)-ones and their structure elucidation


Susma Das (1) orcid , Labet Bankynmaw Marpna (2) orcid , Jai Narain Vishwakarma (3,*) orcid

(1) Department of Chemical Science, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, 782402, Assam, India
(2) Department of Chemical Science, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, 782402, Assam, India
(3) Department of Chemical Science, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, 782402, Assam, India
(*) Corresponding Author

Received: 31 Jul 2021 | Revised: 21 Sep 2021 | Accepted: 07 Oct 2021 | Published: 31 Mar 2022 | Issue Date: March 2022

Abstract


An efficient and regioselective synthetic reaction friendly to the environment has been described to synthesize various derivatives of pyrazolo[1,5-a]quinozolinone. Condensation of aminopyrazole (4a-m) with formylated dimedone (3) in the presence of KHSO4, under ultrasonic irradiation furnished 2/3-substituted 8,8-dimethyl-8,9-dihydropyrazolo[1,5-a]quinazolin-6(7H)-one (6a-m). This is a clean reaction, giving excellent yields with short reaction time. The structures were elucidated with the help of spectral and analytical data. X-ray crystallographic studies of a model compound 6a ascertained its structural configuration, crystal data for C12H12BrN3O (=294.152 g/mol): Triclinic, space group P-1 (no. 2), a = 5.872(4) Å, b = 10.870(8) Å, c = 19.523(15) Å, α = 90.013(10)°, β = 90.009(11)°, γ = 93.838(11)°, = 1243.3(16) Å3, Z = 4, T = 296.15 K, μ(Mo Kα) = 3.293 mm-1, Dcalc = 1.571 g/cm3, 37271 reflections measured (4.18° ≤ 2Θ ≤ 52.7°), 5073 unique (Rint = 0.2404, Rsigma = 0.2366) which were used in all calculations. The final R1 was 0.0596 (I≥2σ(I)) and wR2 was 0.1759 (all data).


Keywords


Regioselective; Aminopyrazole; X-ray crystallography; Ultrasound irradiation; Pyrazolo[1,5-a]pyrimidine; Pyrazolo[1,5-a]quinozolinone

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.13.1.41-48.2168

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 93 times | icon graph PDF Article downloaded 25 times

Funding information


The Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India, New Delhi, and Indian Council of Agricultural Research (ICAR)-Barapani, Shillong for research grants.

References


[1]. Devi, A. S.; Kaping, S.; Vishwakarma, J. N. A Facile Environment-Friendly One-Pot Two-Step Regioselective Synthetic Strategy for 3,7-Diarylpyrazolo[1,5-a]Pyrimidines Related to Zaleplon and 3,6-Diarylpyrazolo[1,5-a]Pyrimidine-7-Amines Assisted by KHSO4 in Aqueous Media. Mol. Divers. 2015, 19 (4), 759-771.
https://doi.org/10.1007/s11030-015-9606-2

[2]. Kalita, U.; Kaping, S.; Nellanant, J.; Helissey, P.; Vishwakarma, J. N. A facile ultrasound-assisted regioselective synthetic strategy for pyrazolo(1,5-a]pyrimidines mediated by KHSO4 in aqueous media. Heterocyclic Lett. 2014, 4 (1), 137-145.

[3]. Kaping, S.; Boiss, I.; Singha, L. I.; Helissey, P.; Vishwakarma, J. N. A Facile, Regioselective Synthesis of Novel 3-(N-Phenylcarboxamide) Pyrazolo[1,5-a]Pyrimidine Analogs in the Presence of KHSO4 in Aqueous Media Assisted by Ultrasound and Their Antibacterial Activities. Mol. Divers. 2016, 20 (2), 379-390.
https://doi.org/10.1007/s11030-015-9639-6

[4]. Kaping, S.; Kalita, U.; Sunn, M.; Singha, L. I.; Vishwakarma, J. N. A Facile, Regioselective Synthesis of Pyrazolo[1, 5-a]Pyrimidine Analogs in the Presence of KHSO4 in Aqueous Media Assisted by Ultrasound and Their Anti-Inflammatory and Anti-Cancer Activities. Monatsh. Chem. 2016, 147 (7), 1257-1276.
https://doi.org/10.1007/s00706-015-1638-x

[5]. Kaping, S.; Sunn, M.; Singha, L. I.; Vishwakarma, J. N. Ultrasound Assisted Synthesis of Pyrazolo[1,5-a]Pyrimidine-Antipyrine Hybrids and Their Anti-Inflammatory and Anti-Cancer Activities. Eur. J. Chem. 2020, 11 (1), 68-79.
https://doi.org/10.5155/eurjchem.11.1.68-79.1942

[6]. Das, S.; Khanikar, S.; Kaping, S.; Roy, J. D.; Sen, A.; Helissey, P.; Vishwakarma, J. N. Efficient Synthesis of Diversely Substituted Pyrazolo[1,5-a]Pyrimidine Derivatives Promoted by Ultrasound Irradiation in Water and Their Antibacterial Activities. Eur. J. Chem. 2020, 11 (4), 304-313.
https://doi.org/10.5155/eurjchem.11.4.304-313.2033

[7]. Kaping, S.; Helissey, P.; Vishwakarma, J. N. A Three Step One-Pot Regioselective Synthesis of Highly Substituted Pyrazolo[1,5-a] Pyrimidines Assisted by KHSO4 in Aqueous Media under Ultrasound Irradiation. Eur. J. Chem. 2020, 11 (3), 179-186.
https://doi.org/10.5155/eurjchem.11.3.179-186.1977

[8]. Hassanzadeh, F.; Jafari, E.; Hakimelahi, G. H.; Khajouei, M. I.; Jalali, M.; Khodarahmi, G. A. Antibacterial, antifungal and cytotoxic evaluation of some new quinazolinone derivatives. Res. Pharm. Sci. 2012, 7 (2), 87-94.

[9]. Shekarrao, K.; Kaishap, P. P.; Saddanapu, V.; Addlagatta, A.; Gogoi, S.; Boruah, R. C. Microwave-Assisted Palladium Mediated Efficient Synthesis of Pyrazolo[3,4-b]Pyridines, Pyrazolo[3,4-b]Quinolines, Pyrazolo[1,5-a]Pyrimidines and Pyrazolo[1,5-a]Quinazolines. RSC Adv. 2014, 4 (46), 24001-24006.
https://doi.org/10.1039/C4RA02865A

[10]. Metwally, N. H.; Mohamed, M. S. Pyrazoloquinazoline Derivatives: Synthesis, Reactions, and Biological Applications. Synth. Commun. 2018, 48 (7), 721-746.
https://doi.org/10.1080/00397911.2017.1399208

[11]. Garg, M.; Chauhan, M.; Singh, P. K.; Alex, J. M.; Kumar, R. Pyrazolo quinazolines: Synthetic Strategies and Bioactivities. Eur. J. Med. Chem. 2015, 97, 444-461.
https://doi.org/10.1016/j.ejmech.2014.11.051

[12]. Zhao, H.; Hu, X.; Zhang, Y.; Tang, C.; Feng, B. Progress in Synthesis and Bioactivity Evaluation of Pyrazoloquinazolines. Lett. Drug Des. Discov. 2020, 17 (2), 104-113.
https://doi.org/10.2174/1570180815666181017120100

[13]. Storer, R.; Ashton, C. J.; Baxter, A. D.; Hann, M. M.; Marr, C. L. P.; Mason, A. M.; Mo, C.-L.; Myers, P. L.; Noble, S. A.; Penn, C. R.; Weir, N. G.; Woods, J. M.; Coe, P. L. The Synthesis and Antiviral Activity of 4-Fluoro-1-β-D-Ribofuranosyl-1H-Pyrazole-3-Carboxamide. Nucleosides Nucleotides 1999, 18 (2), 203-216.
https://doi.org/10.1080/15257779908043068

[14]. Steckiewicz, K. P.; Barcińska, E.; Woźniak, M. Nerve Growth Factor as an Important Possible Component of Novel Therapy for Cancer, Diabetes and Cardiovascular Diseases. Cell. Mol. Biol. (Noisy-le-grand) 2018, 64 (9), 16-23.
https://doi.org/10.14715/cmb/2018.64.9.3

[15]. Catarzi, D.; Colotta, V.; Varano, F.; Poli, D.; Squarcialupi, L.; Filacchioni, G.; Varani, K.; Vincenzi, F.; Borea, P. A.; Dal Ben, D.; Lambertucci, C.; Cristalli, G. Pyrazolo[1,5-c]Quinazoline Derivatives and Their Simplified Analogues as Adenosine Receptor Antagonists: Synthesis, Structure-Affinity Relationships and Molecular Modeling Studies. Bioorg. Med. Chem. 2013, 21 (1), 283-294.
https://doi.org/10.1016/j.bmc.2012.10.031

[16]. Guerrini, G.; Ciciani, G.; Ciattini, S.; Crocetti, L.; Daniele, S.; Martini, C.; Melani, F.; Vergelli, C.; Giovannoni, M. P. Pyrazolo[1,5-a]Quinazoline Scaffold as 5-Deaza Analogue of Pyrazolo[5,1-c][1,2,4]Benzotriazine System: Synthesis of New Derivatives, Biological Activity on GABAA Receptor Subtype and Molecular Dynamic Study. J. Enzyme Inhib. Med. Chem. 2016, 31 (2), 195-204.
https://doi.org/10.3109/14756366.2015.1014475

[17]. Bruker (2008). SAINT, SMART, APEXII. Bruker AXS Inc., Madison, Wisconsin, USA.

[18]. Sheldrick, G. M. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053273314026370

[19]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42 (2), 339-341.
https://doi.org/10.1107/S0021889808042726

[20]. Sadek, K. U.; Mekheimer, R. A.; Mohamed, T. M.; Moustafa, M. S.; Elnagdi, M. H. Regioselectivity in the Multicomponent Reaction of 5-Aminopyrazoles, Cyclic 1,3-Diketones and Dimethylformamide Dimethylacetal under Controlled Microwave Heating. Beilstein J. Org. Chem. 2012, 8, 18-24.
https://doi.org/10.3762/bjoc.8.3

[21]. Al-Mousawi, S.; John, E.; Abdelkhalik, M. M.; Elnagdi, M. H. Enaminones as Building Blocks in Heterocyclic Syntheses: A New Approach to Polyfunctionally Substituted Cyclohexenoazines. J. Heterocycl. Chem. 2003, 40 (4), 689-695.
https://doi.org/10.1002/jhet.5570400421

[22]. Petrov, A. A.; Kasatochkin, A. N.; Emelina, E. E.; Nelyubina, Y. V.; Antipin, M. Y. α-Amino Azoles in the Synthesis of Heterocycles: VI. Synthesis and Structure of Cycloalkane-Annulated Pyrazolo[1,5-a] Pyrimidines. Russ. J. Org. Chem. 2009, 45 (9), 1390-1401.
https://doi.org/10.1134/S1070428009090139

[23]. Kryl'skii, D. V.; Shikhaliev, K. S.; Chuvashlev, A. S. Three-Component Condensations with 5-Amino-4-Phenylpyrazole. Russ. J. Org. Chem. 2010, 46 (3), 410-416.
https://doi.org/10.1134/S107042801003019X

[24]. Ghotekar, B. K.; Jachak, M. N.; Toche, R. B. New One-Step Synthesis of Pyrazolo[1,5-a]Pyrimidine and Pyrazolo[1,5-a]Quinazoline Deriva-tives via Multicomponent Reactions. J. Heterocycl. Chem. 2009, 46 (4), 708-713.
https://doi.org/10.1002/jhet.128

[25]. Low, J. N.; Cobo, J.; Mera, J.; Quiroga, J.; Glidewell, C. Molecular Conformation and Supramolecular Aggregation in Two Fused Pyrazoles: Pi-Stacked R(2)(2)(6) Dimers in 2,8,8-Trimethyl-6,7,8,9-Tetrahydropyrazolo[2,3-a]Quinazolin-6-One, and Sheets of Alterna-ting R(2(2)12) and R(6)(6)(48) Rings in 3-Tert-Butyl-4',4'-Dimethyl-1-Phenyl-4,5,6,7-Tetrahydro-1H-Pyrazolo[3,4-b]Pyridine-5-Spiro-1'-Cyclohexane-2',6'-Dione. Acta Crystallogr. C 2004, 60 (Pt 4), o265-9.
https://doi.org/10.1107/S0108270104004159


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Das, S.; Marpna, L.; Vishwakarma, J. Eur. J. Chem. 2022, 13(1), 41-48. doi:10.5155/eurjchem.13.1.41-48.2168
Das, S.; Marpna, L.; Vishwakarma, J. Efficient, environment friendly and regioselective synthetic strategy for 2/3-substituted-8,8-dimethyl-8,9-dihydropyrazolo[1,5-a]quinazolin-6(7H)-ones and their structure elucidation. Eur. J. Chem. 2022, 13(1), 41-48. doi:10.5155/eurjchem.13.1.41-48.2168
Das, S., Marpna, L., & Vishwakarma, J. (2022). Efficient, environment friendly and regioselective synthetic strategy for 2/3-substituted-8,8-dimethyl-8,9-dihydropyrazolo[1,5-a]quinazolin-6(7H)-ones and their structure elucidation. European Journal of Chemistry, 13(1), 41-48. doi:10.5155/eurjchem.13.1.41-48.2168
Das, Susma, Labet Bankynmaw Marpna, & Jai Narain Vishwakarma. "Efficient, environment friendly and regioselective synthetic strategy for 2/3-substituted-8,8-dimethyl-8,9-dihydropyrazolo[1,5-a]quinazolin-6(7H)-ones and their structure elucidation." European Journal of Chemistry [Online], 13.1 (2022): 41-48. Web. 18 May. 2022
Das, Susma, Marpna, Labet, AND Vishwakarma, Jai. "Efficient, environment friendly and regioselective synthetic strategy for 2/3-substituted-8,8-dimethyl-8,9-dihydropyrazolo[1,5-a]quinazolin-6(7H)-ones and their structure elucidation" European Journal of Chemistry [Online], Volume 13 Number 1 (31 March 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.13.1.41-48.2168

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2022, 13(1), 41-48 | doi: https://doi.org/10.5155/eurjchem.13.1.41-48.2168 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.