

Study of the antioxidant potential, polyphenol content, and mineral composition of Cordyla pinnata, a plant for food and medicinal use of the Senegalese pharmacopoeia
Pape Issakha Dieye (1,*)








(1) Laboratory of Analytical Chemistry and Food Sciences, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, BP 5005 Dakar-Fann, Senegal.
(2) Laboratory of Analytical Chemistry and Food Sciences, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, BP 5005 Dakar-Fann, Senegal.
(3) Laboratory of Analytical Chemistry and Food Sciences, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, BP 5005 Dakar-Fann, Senegal
(4) Laboratory of Analytical Chemistry and Food Sciences, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, BP 5005 Dakar-Fann, Senegal
(5) Laboratory of Analytical Chemistry and Food Sciences, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, BP 5005 Dakar-Fann, Senegal
(6) Laboratory of Analytical Chemistry and Food Sciences, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, BP 5005 Dakar-Fann, Senegal
(7) Laboratory of Analytical Chemistry and Food Sciences, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, BP 5005 Dakar-Fann, Senegal
(8) Laboratory of Analytical Chemistry and Food Sciences, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, BP 5005 Dakar-Fann, Senegal
(*) Corresponding Author
Received: 31 Aug 2021 | Revised: 19 Nov 2021 | Accepted: 20 Nov 2021 | Published: 31 Mar 2022 | Issue Date: March 2022
Abstract
Oxidative stress, caused by reactive oxygen species, is known to cause oxidation of biomolecules, leading to cell damage and oxidation of important enzymes, resulting in an unstable pathophysiological state. The antioxidant capacity of leaves, stems, and roots of Cordyla pinnata was determined by measuring the inhibition of the absorbance of 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals by spectrophotometry. The polyphenol contents were determined with the same technique. The mineral contents were evaluated by atomic absorption spectrometry. The strongest inhibition of the DPPH radical after that of the control antioxidant (IC50 = 0.014 mg/mL) was obtained with the ethyl acetate fraction of the leaf hydroethanolic extract (IC50 = 0.201 mg/mL). For ABTS, the ethyl acetate fraction of the stem extract was more active (IC50 = 0.884×10-3 mg/mL) than the other extracts and ascorbic acid (IC50 = 0.915×10-3 mg/mL). The polyphenol content of the leaves, stems and roots extracts is between 66.33 and 142.67; 55.33 and 69.33; 67.67 and 116.00 EAT/g of dry extract, respectively. The contents of Fe, Na, Zn, K, Mg, and Ca are 0.0005, 0.0006, 0.0020, 0.0897, 0.0247, and 0.0273% for leaves, respectively. They are 0.0001, 0.0010, 0.0015, 0.0557, 0.0131, and 0.1357% for the stems, respectively. The mineral contents of the roots in the same order are 0.0002, 0.0013, 0.0013, 0.0140, 0.0096, and 0.0267%. Strong inhibition of free radicals and the chemical composition of various plant materials would justify the use of C. pinnata in the management of certain pathologies and nutritional deficiencies.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.13.1.56-62.2182
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


References
[1]. Magder, S. Reactive Oxygen Species: Toxic Molecules or Spark of Life? Crit. Care 2006, 10 (1), 208.
https://doi.org/10.1186/cc3992
[2]. Courties, A.; Berenbaum, F.; Sellam, J. The Phenotypic Approach to Osteoarthritis: A Look at Metabolic Syndrome-Associated Osteoarthritis. Joint Bone Spine 2019, 86 (6), 725-730.
https://doi.org/10.1016/j.jbspin.2018.12.005
[3]. Favier, A. Oxidative stress in human diseases. Ann. Pharm. Fr. 2006, 64 (6), 390-396.
https://doi.org/10.1016/S0003-4509(06)75334-2
[4]. Bellamine, K. Clinical phytotherapy in dermatological conditions, Thesis, Mohammed V University, 2017.
[5]. Dosso, M.; Soro, D.; Koffi, A. E.; Traore, F.; N'guessan, J. D. Isolement Par Partition Bio Guidé Du Principe Actif Myostimulant de l'extrait Aqueux de Mareya Micrantha (Benth) Mull. Arg. (Euphorbiaceae). J. Appl. Biosci. 2017, 114 (1), 11336-11344.
https://doi.org/10.4314/jab.v114i1.7
[6]. Kone, K. H. C.; Coulibaly, K.; Konan, K. S. Identification de Quelques Plantes Utilisées En Médecine Ethnovétérinaire à Sinématiali (Nord de La Côte d'Ivoire). J. Appl. Biosci. 2019, 135 (1), 13766-13774.
https://doi.org/10.4314/jab.v135i1.3
[7]. Laouali, A.; Mamoudou Boubacar, M.; Issoufou, B.; Ali, M. Diversité et Usages Des Plantes Médicinales à l'ouest Du Niger. J. Anim. Plant Sci. 2020, 46 (1), 8164-8174.
https://doi.org/10.35759/JAnmPlSci.v46-2.1
[8]. Bouzabata, A. Les médicaments à base de plantes en Algérie : réglementation et enregistrement. Phytothérapie 2017, 15 (6), 401-408.
https://doi.org/10.1007/s10298-016-1089-5
[9]. World Health Organization, Traditional Medicine. Report by the secretariat https://apps.who.int/gb/ebwha/pdf_files/EB111/ eeb1119.pdf (accessed Nov 20, 2021).
[10]. Mechri, A.; Amrani, A.; Benabderrahmane, W.; Benaissa, O.; Boubekri, N.; Zama, D.; Benayache, F.; Benayache, S. Les Polyphénols de l'extrait n-Butanol de Crataegus Oxyacantha : Évaluation de Leur Pouvoir Antioxydant et Protecteur Vis-à-Vis de La Toxicité de La Doxorubicine. Phytothérapie 2018, 16 (S1), S22-S31.
https://doi.org/10.3166/phyto-2018-0009
[11]. Djenidi, H. Antioxidant and anti-free radical activity of foods of plant origin consumed in the regions of Biskra and Setif, PhD thesis, Ferhat Abbas University Setif 1, 2020.
[12]. Dieng, S. D.; Niang-Diop, F.; Diop, M.; Goudiaby, A.; Sambou, B.; Lykke, A. M. Filière Des Produits à Usage Médicinal Issus de Cordyla Pinnata, Detarium Microcarpum et Detarium Senegalense Au Sénégal. Flora et Vegetatio Sudano-Sambesica 2019, 22, 23-35.
https://doi.org/10.21248/fvss.22.78
[13]. Veitch, N. C.; Kite, G. C.; Lewis, G. P. Flavonol Pentaglycosides of Cordyla (Leguminosae: Papilionoideae: Swartzieae): Distribution and Taxonomic Implications. Phytochemistry 2008, 69 (12), 2329-2335.
https://doi.org/10.1016/j.phytochem.2008.05.026
[14]. Veitch, N. C.; Bristow, J. M.; Kite, G. C.; Lewis, G. P. Mildbraedin, a Novel Kaempferol Tetraglycoside from the Tropical Forest Legume Mildbraediodendron Excelsum. Tetrahedron Lett. 2005, 46 (49), 8595-8598.
https://doi.org/10.1016/j.tetlet.2005.09.186
[15]. Dieye, P. I.; Ndiaye, S.; Dione, F.; Diop, A.; Dieng, A.; Diop, A.; Ndiaye, B.; Diop, Y. M.; Sarr, S. O. Des Extraits de Jatropha Chevalieri et de Cordylla Pinnata, et de Leurs Profils Chromatographiques. J. Appl. Biosci. 2021, 158, 16396-16410.
[16]. Sarr, S. O.; Fall, A. D.; Gueye, R.; Diop, A.; Sene, B.; Diatta, K.; Ndiaye, B.; Diop, Y. M. Evaluation de l'activité Antioxydante Des Extraits Des Feuilles de Aphania Senegalensis (Sapindaceae) et de Saba Senegalensis (Apocynaceae). Int. J. Biol. Chem. Sci. 2016, 9 (6), 2676-2684.
https://doi.org/10.4314/ijbcs.v9i6.13
[17]. Tajini, F.; Bouali, Y.; Ouerghi, A. Etude de la qualité nutritionnelle de fruit de Phœnix dactylifera L. : mesure des paramètres biochimiques. Revue Nature et Technologie 2020, 12 (2), 39-49.
[18]. Bennouna, M. A.; Belaqziz, R.; Arjouni, M. Y.; Romane, A. Quantitative Analysis of Some Oligo-Elements and Heavy Metals in Some Species of Thymus from Morocco. Nat. Prod. Res. 2013, 27 (19), 1784-1788.
https://doi.org/10.1080/14786419.2012.751597
[19]. Mezouar, D.; Lahfa, F. B.; Djaziri, R.; Boucherit-Otmani, Z. Évaluation de l'activité antioxydante de Berberis vulgaris L. Phytothérapie 2014, 12 (5), 297-301.
https://doi.org/10.1007/s10298-014-0867-1
[20]. Martysiak-Żurowska, D.; Wenta, W. A Comparison of ABTS and DPPH Methods for Assessing the Total Antioxidant Capacity of Human Milk. Acta Sci. Pol. Technol. Aliment. 2012, 11 (1), 83-89.
[21]. Jasprica, I.; Bojic, M.; Mornar, A.; Besic, E.; Bucan, K.; Medic-Saric, M. Evaluation of Antioxidative Activity of Croatian Propolis Samples Using DPPH· and ABTS·+ Stable Free Radical Assays. Molecules 2007, 12 (5), 1006-1021.
https://doi.org/10.3390/12051006
[22]. Diatta, K.; Diatta, W.; Fall, A. D.; Dieng, S. I. M.; Mbaye, A. I.; Sarr, A.; Seye, M. B. Ethnopharmacological Survey of Medicinal Plants Used to Treat Human Diseases in the Tivaouane Department, Senegal. Eur. J. Med. Plants 2019, 1-13.
https://doi.org/10.9734/ejmp/2019/v30i330178
[23]. Dior Fall, A.; Dieng, S. I. M.; Sarr, A.; Dieng, M. Phytochemical Screening and Antioxidant Effect of Ethanol Leaf and Trunk Bark Extracts of Cordyla Pinnata (Lepr. Ex A. Rich.) Milne-Redh. (Caesalpiniaceae). Pharmacogn. J. 2019, 11 (6s), 1415-1418.
https://doi.org/10.5530/pj.2019.11.219
[24]. El Omari, N.; Sayah, K.; Fettach, S.; El Blidi, O.; Bouyahya, A.; Faouzi, M. E. A.; Kamal, R.; Barkiyou, M. Evaluation of in Vitro Antioxidant and Antidiabetic Activities of Aristolochia Longa Extracts. Evid. Based. Complement. Alternat. Med. 2019, 2019, 7384735.
https://doi.org/10.1155/2019/7384735
[25]. Mahamat, S. A.; Lahat, N.; Cyrille, A. N.; Mady, C.; Mar, D. C. Phytochemical Screening, Total Phenolic and Antioxidant Activity of Numerous Extracts from Leaves and Bark of Bauhinia Rufescens Lam. Food Nutr. Sci. 2021, 12 (06), 544-556.
https://doi.org/10.4236/fns.2021.126041
[26]. Dieng, S. I. M.; Fall, A. D.; Diatta-Badji, K.; Sarr, A.; Sene, M.; Sene, M.; Mbaye, A.; Diatta, W.; Bassene, E. Evaluation de l'activité Antioxydante Des Extraits Hydro-Ethanoliques Des Feuilles et Écorces de Piliostigma Thonningii Schumach. Int. J. Biol. Chem. Sci. 2017, 11 (2), 768-776.
https://doi.org/10.4314/ijbcs.v11i2.19
[27]. Charbit, V. Trace elements: Role and advice of the dispensary pharmacist, Thesis, Aix Marseille University, 2017.
[28]. Baudin, B. Oligoéléments cofacteurs enzymatiques. Rev. francoph. Lab. 2021, 2021 (533), 18-24.
https://doi.org/10.1016/S1773-035X(21)00167-2
[29]. Haleng, J.; Pincemail, J.; Defraigne, J.-O.; Charlier, C.; Chapelle, J.-P. Le stress oxydant. Rev. Med. Liege 2007, 62 (10), 628-638.
[30]. Boyle, N. B.; Lawton, C.; Dye, L. The Effects of Magnesium Supplementation on Subjective Anxiety and Stress-A Systematic Review. Nutrients 2017, 9 (5), 429.
https://doi.org/10.3390/nu9050429
[31]. Tarleton, E. K.; Littenberg, B.; MacLean, C. D.; Kennedy, A. G.; Daley, C. Role of Magnesium Supplementation in the Treatment of Depression: A Randomized Clinical Trial. PLoS One 2017, 12 (6), e0180067.
https://doi.org/10.1371/journal.pone.0180067
[32]. Tandoğan, B.; Nuray Ulusu, N. Importance of Calcium. Turk. J. Med. Sci. 2005, 35 (4), 197-201.
[33]. Alyemeni, M. N.; Basahy, A. Y.; Sher, H. Physico-chemical analysis and mineral composition of some sesame seeds (Sesamum indicum L.) grown in the Gizan area of Saudi Arabia. J. Med. Plants Res. 2011, 5 (2), 270-274.
[34]. World Health Organization, Human Vitamin and Mineral Require-ments, 2001, https://www.fao.org/3/y2809e/y2809e.pdf (accessed Nov 20, 2021).
[35]. Descaillot, L.; Laville, M. Actualité du sodium dans les maladies rénales et cardiovasculaires. Nephrol. Ther. 2015, 11 (7), 525-530.
https://doi.org/10.1016/j.nephro.2015.04.006
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.13.1.56-62.2182

















European Journal of Chemistry 2022, 13(1), 56-62 | doi: https://doi.org/10.5155/eurjchem.13.1.56-62.2182 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.