European Journal of Chemistry

Synthesis, antimicrobial, and antitubercular evaluation of new Schiff bases with in silico ADMET and molecular docking studies

Crossmark


Main Article Content

Sakshith Raghavendra Prasad
Nayak Devappa Satyanarayan
Avarse Satish Kumar Shetty
Basaiah Thippeswamy

Abstract

Schiff bases are a proven moiety in antitubercular drug discovery and the antitubercular drug development. Drug discovery is a never-ending process due to evolving drug resistance by the bacteria, as a result, there is a need of developing new antitubercular drugs. In this continuous process of antitubercular drug discovery, new series of Schiff bases are synthesized using quinoline carbohydrazide upon coupling with different aldehydes in ethanolic media through multistep synthesis. These synthesized compounds were purified and characterized by different spectroscopic techniques. The molecules were in vitro screened for antifungal and antibacterial potential by Agar well diffusion assay, antitubercular activity by using microplate Alamar blue assay, and an attempt has been made to study the in-silico relationship between new Schiff base derivatives 4a-f and the crystal structure of M. tuberculosis (5V3Y) protein by molecular docking studies. Synthesized compounds 4a-f show good interaction with the crystal structure of M. tuberculosis protein (5V3Y) and fulfill ADMET characteristics in silico experiments. Among the compounds tested, compound 4d was found to be active against bacteria and fungi. Compound 4b was found to be sensitive against M. tuberculosis at 50 µg/mL concentration.


icon graph This Abstract was viewed 1617 times | icon graph Article PDF downloaded 421 times

How to Cite
(1)
Prasad, S. R.; Satyanarayan, N. D.; Shetty, A. S. K.; Thippeswamy, B. Synthesis, Antimicrobial, and Antitubercular Evaluation of New Schiff Bases With in Silico ADMET and Molecular Docking Studies. Eur. J. Chem. 2022, 13, 109-116.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Alsayed, S. S. R.; Lun, S.; Bailey, A. W.; Suri, A.; Huang, C.-C.; Mocerino, M.; Payne, A.; Sredni, S. T.; Bishai, W. R.; Gunosewoyo, H. Design, synthesis and evaluation of novel indole-2-carboxamides for growth inhibition of Mycobacterium tuberculosis and paediatric brain tumour cells. RSC Adv. 2021, 11, 15497-15511.
https://doi.org/10.1039/D0RA10728J

[2]. Dheda, K.; Gumbo, T.; Maartens, G.; Dooley, K. E.; McNerney, R.; Murray, M.; Furin, J.; Nardell, E. A.; London, L.; Lessem, E.; Theron, G.; van Helden, P.; Niemann, S.; Merker, M.; Dowdy, D.; Van Rie, A.; Siu, G. K. H.; Pasipanodya, J. G.; Rodrigues, C.; Clark, T. G.; Sirgel, F. A.; Esmail, A.; Lin, H.-H.; Atre, S. R.; Schaaf, H. S.; Chang, K. C.; Lange, C.; Nahid, P.; Udwadia, Z. F.; Horsburgh, C. R., Jr; Churchyard, G. J.; Menzies, D.; Hesseling, A. C.; Nuermberger, E.; McIlleron, H.; Fennelly, K. P.; Goemaere, E.; Jaramillo, E.; Low, M.; Jara, C. M.; Padayatchi, N.; Warren, R. M. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 2017, 5 (4), 291-360.
https://doi.org/10.1016/S2213-2600(17)30079-6

[3]. Schiff, H. Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Ann. Chem. Pharm. 1864, 131, 118-119.
https://doi.org/10.1002/jlac.18641310113

[4]. Bharti, S. K.; Nath, G.; Tilak, R.; Singh, S. K. Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2,4-disubstituted thiazole ring. Eur. J. Med. Chem. 2010, 45, 651-660.
https://doi.org/10.1016/j.ejmech.2009.11.008

[5]. Cordeiro, R.; Kachroo, M. Synthesis and biological evaluation of anti-tubercular activity of Schiff bases of 2-Amino thiazoles. Bioorg. Med. Chem. Lett. 2020, 30, 127655.
https://doi.org/10.1016/j.bmcl.2020.127655

[6]. Guo, S.; Song, Y.; Huang, Q.; Yuan, H.; Wan, B.; Wang, Y.; He, R.; Beconi, M. G.; Franzblau, S. G.; Kozikowski, A. P. Identification, synthesis, and pharmacological evaluation of tetrahydroindazole based ligands as novel antituberculosis agents. J. Med. Chem. 2010, 53, 649-659.
https://doi.org/10.1021/jm901235p

[7]. Santoshkumar, S.; Satyanarayana, N. D.; Anantacharya, R.; Sameer, P. Synthesis, antimicrobial, antitubercular and cheminformatic studies of 2-(1-benzofuran-2-yl)-N'-[(3Z)-2-oxo-1, 2-dihydro-3H-indol-3-ylidene] quinoline-4-carbohydrazide and its derivatives. Int. J. Pharm. Pharm. Sci. 2017, 9, 260-267.
https://doi.org/10.22159/ijpps.2017v9i5.17564

[8]. Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem. 2009, 9, 1648-1654.
https://doi.org/10.2174/138955709791012247

[9]. Tseng, C.-H.; Tung, C.-W.; Wu, C.-H.; Tzeng, C.-C.; Chen, Y.-H.; Hwang, T.-L.; Chen, Y.-L. Discovery of indeno[1,2-c]quinoline derivatives as potent dual antituberculosis and anti-inflammatory agents. Molecules 2017, 22, 1001.
https://doi.org/10.3390/molecules22061001

[10]. Gaber, A.; Alsanie, W. F.; Alhomrani, M.; Alamri, A. S.; El-Deen, I. M.; Refat, M. S. Synthesis of 1-[(Aryl)(3-amino-5-oxopyrazolidin-4-ylidene) methyl]-2-oxo-1,2-dihydroquinoline-3-carboxylic Acid Derivatives and Their Breast Anticancer Activity. Crystals (Basel) 2021, 11, 571.
https://doi.org/10.3390/cryst11050571

[11]. Salve, P. S.; Alegaon, S. G.; Sriram, D. Three-component, one-pot synthesis of anthranilamide Schiff bases bearing 4-aminoquinoline moiety as Mycobacterium tuberculosis gyrase inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 1859-1866.
https://doi.org/10.1016/j.bmcl.2017.02.031

[12]. Hunter, A. D. ACD/ChemSketch 1.0 (freeware); ACD/ChemSketch 2.0 and its Tautomers, Dictionary, and 3D Plug-ins; ACD/HNMR 2.0; ACD/CNMR 2.0. J. Chem. Educ. 1997, 74, 905.
https://doi.org/10.1021/ed074p905

[13]. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605-1612.
https://doi.org/10.1002/jcc.20084

[14]. Dallakyan, S.; Olson, A. J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243-250.
https://doi.org/10.1007/978-1-4939-2269-7_19

[15]. Kemmish, H.; Fasnacht, M.; Yan, L. Fully automated antibody structure prediction using BIOVIA tools: Validation study. PLoS One 2017, 12, e0177923.
https://doi.org/10.1371/journal.pone.0177923

[16]. Harishkumar, S.; Satyanarayan, N. D.; Santhosha, S. M. Antiproliferative and in silico admet study of new 4-(piperidin-1-ylmethyl)-2- (thiophen-2-yl) quinoline analogues. Asian J. Pharm. Clin. Res. 2018, 11, 306-313.
https://doi.org/10.22159/ajpcr.2018.v11i4.24147

[17]. Aggarwal, A.; Parai, M. K.; Shetty, N.; Wallis, D.; Woolhiser, L.; Hastings, C.; Dutta, N. K.; Galaviz, S.; Dhakal, R. C.; Shrestha, R.; Wakabayashi, S.; Walpole, C.; Matthews, D.; Floyd, D.; Scullion, P.; Riley, J.; Epemolu, O.; Norval, S.; Snavely, T.; Robertson, G. T.; Rubin, E. J.; Ioerger, T. R.; Sirgel, F. A.; van der Merwe, R.; van Helden, P. D.; Keller, P.; Böttger, E. C.; Karakousis, P. C.; Lenaerts, A. J.; Sacchettini, J. C. Development of a Novel Lead that Targets M. tuberculosis Polyketide Synthase 13. Cell 2017, 170, 249-259.e25.
https://doi.org/10.1016/j.cell.2017.06.025

[18]. PyMOL. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. http://www.pymol.org/pymol (accessed January 2, 2022).

[19]. Gaillard, T. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 benchmark. J. Chem. Inf. Model. 2018, 58, 1697-1706.
https://doi.org/10.1021/acs.jcim.8b00312

[20]. Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P. W.; Tang, Y. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 2012, 52, 3099-3105.
https://doi.org/10.1021/ci300367a

[21]. Lin, J. H.; Yamazaki, M. Role of P-glycoprotein in pharmacokinetics: clinical implications: Clinical implications. Clin. Pharmacokinet. 2003, 42, 59-98.
https://doi.org/10.2165/00003088-200342010-00003

[22]. Arthington-Skaggs, B. A.; Motley, M.; Warnock, D. W.; Morrison, C. J. Comparative evaluation of PASCO and national committee for clinical laboratory standards M27-A broth microdilution methods for antifungal drug susceptibility testing of yeasts. J. Clin. Microbiol. 2000, 38, 2254-2260.
https://doi.org/10.1128/JCM.38.6.2254-2260.2000

[23]. Rocha, L.; Marston, A.; Potterat, O.; Kaplan, M. A.; Stoeckli-Evans, H.; Hostettmann, K. Antibacterial phloroglucinols and flavonoids from Hypericum brasiliense. Phytochemistry 1995, 40, 1447-1452.
https://doi.org/10.1016/0031-9422(95)00507-4

[24]. MacLowry, J. D.; Jaqua, M. J.; Selepak, S. T. Detailed methodology and implementation of a semiautomated serial dilution microtechnique for antimicrobial susceptibility testing. Appl. Microbiol. 1970, 20, 46-53.
https://doi.org/10.1128/am.20.1.46-53.1970

[25]. Portillo, A.; Vila, R.; Freixa, B.; Adzet, T.; Cañigueral, S. Antifungal activity of Paraguayan plants used in traditional medicine. J. Ethnopharmacol. 2001, 76, 93-98.
https://doi.org/10.1016/S0378-8741(01)00214-8

[26]. Maria, C. S. L.; Marcus, V. N.; de Souza. Alessandra, C. P.; Marcelle de, L. F.; Raoni S. B. G.; Thais Cristina, M. N.; Monica, A. P. Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues. ARKIVOC 2007, 2007, 181-191.
https://doi.org/10.3998/ark.5550190.0008.f18

[27]. Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337-341.
https://doi.org/10.1016/j.ddtec.2004.11.007

Supporting Agencies

Kuvempu University, Shankaraghatta-577451, India.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).