European Journal of Chemistry

X-ray crystal structure analysis of N'-acetyl-N'-phenyl-2-naphthohydrazide

Crossmark


Main Article Content

Varun Sharma
Indrajit Karmakar
Goutam Brahmachari
Vivek Kumar Gupta

Abstract

N'-Acetyl-N'-phenyl-2-naphthohydrazide, a biologically relevant organic molecule, was synthesized following a reported method and characterized based on its single X-ray crystallographic studies. The present manuscript deals with its detailed molecular interactions and X-ray crystal structure. Its space group is P-1 with the following unit cell parameters: a = 8.9164(7), b = 9.7058(9), c = 17.7384(12) Å, α = 88.308(7)°, β = 89.744(6)°, γ = 86.744(7)° and Z = 2. Crystal structure was solved by direct method and refined by full matrix least squares procedure to a final R value of 0.0580 and to a GOOF value of 1.066. The X-ray diffraction analyses showed that the asymmetric unit contains two crystallographically independent molecules. The crystal structure is stabilized by elaborate network of N-H···O and C-H···O hydrogen bonds along with C-H···π and π···π interactions to form supramolecular structures.


icon graph This Abstract was viewed 820 times | icon graph Article PDF downloaded 501 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Sharma, V.; Karmakar, I.; Brahmachari, G.; Gupta, V. K. X-Ray Crystal Structure Analysis of N’-Acetyl-N’-Phenyl-2-Naphthohydrazide. Eur. J. Chem. 2022, 13, 253-258.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Ding, Y.; Li, H.; Meng, Y.; Zhang, T.; Li, J.; Chen, Q.-Y.; Zhu, C. Direct synthesis of hydrazones by visible light mediated aerobic oxidative cleavage of the C-C bond. Org. Chem. Front. 2017, 4, 1611-1614.
https://doi.org/10.1039/C7QO00276A

[2]. Krátký, M.; Bősze, S.; Baranyai, Z.; Stolaříková, J.; Vinšová, J. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide. Bioorg. Med. Chem. Lett. 2017, 27, 5185-5189.
https://doi.org/10.1016/j.bmcl.2017.10.050

[3]. Kauthale, S.; Tekale, S.; Damale, M.; Sangshetti, J.; Pawar, R. Synthesis, antioxidant, antifungal, molecular docking and ADMET studies of some thiazolyl hydrazones. Bioorg. Med. Chem. Lett. 2017, 27, 3891-3896.
https://doi.org/10.1016/j.bmcl.2017.06.043

[4]. Xiao, H.; Zhang, M.; Liu, J.; Han, Z.; Yang, L.; Wu, X. A novel rhodamine B fluorescent probe for Hg2+: Synthesis and evaluation. Youji huaxue 2016, 36, 2413-2418.
https://doi.org/10.6023/cjoc201604040

[5]. Yang, Y.; Gao, C.-Y.; Liu, J.; Dong, D. Recent developments in rhodamine salicylidene hydrazone chemosensors. Anal. Methods 2016, 8, 2863-2871.
https://doi.org/10.1039/C6AY00135A

[6]. Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D. The SAMP-/RAMP-hydrazone methodology in asymmetric synthesis. Tetrahedron 2002, 58, 2253-2329.
https://doi.org/10.1016/S0040-4020(02)00080-7

[7]. Cvrtila, I.; Fanlo-Virgós, H.; Schaeffer, G.; Monreal Santiago, G.; Otto, S. Redox control over acyl hydrazone photoswitches. J. Am. Chem. Soc. 2017, 139, 12459-12465.
https://doi.org/10.1021/jacs.7b03724

[8]. Dyniewicz, J.; Lipiński, P. F. J.; Kosson, P.; Leśniak, A.; Bochyńska-Czyż, M.; Muchowska, A.; Tourwé, D.; Ballet, S.; Misicka, A.; Lipkowski, A. W. Hydrazone linker as a useful tool for preparing chimeric peptide/nonpeptide bifunctional compounds. ACS Med. Chem. Lett. 2017, 8, 73-77.
https://doi.org/10.1021/acsmedchemlett.6b00381

[9]. Bajorowicz, B.; Nadolna, J.; Lisowski, W.; Klimczuk, T.; Zaleska-Medynska, A. The effects of bifunctional linker and reflux time on the surface properties and photocatalytic activity of CdTe quantum dots decorated KTaO3 composite photocatalysts. Appl. Catal. B 2017, 203, 452-464.
https://doi.org/10.1016/j.apcatb.2016.10.027

[10]. Mathew, B.; Suresh, J.; Ahsan, M. J.; Mathew, G. E.; Usman, D.; Subramanyan, P. N. S.; Safna, K. F.; Maddela, S. Hydrazones as a privileged structural linker in antitubercular agents: a review. Infect. Disord. Drug Targets 2015, 15, 76-88.
https://doi.org/10.2174/1871526515666150724104411

[11]. Huang, Z.; Wang, C.; Dong, G. A hydrazone-based exo-directing-group strategy for β C-H oxidation of aliphatic amines. Angew. Chem. Int. Ed Engl. 2016, 55, 5299-5303.
https://doi.org/10.1002/anie.201600912

[12]. Chourasiya, S. S.; Kathuria, D.; Nikam, S. S.; Ramakrishnan, A.; Khullar, S.; Mandal, S. K.; Chakraborti, A. K.; Bharatam, P. V. Azine-hydrazone tautomerism of guanylhydrazones: Evidence for the preference toward the azine tautomer. J. Org. Chem. 2016, 81, 7574-7583.
https://doi.org/10.1021/acs.joc.6b01258

[13]. Ros, A.; López-Rodríguez, R.; Estepa, B.; Álvarez, E.; Fernández, R.; Lassaletta, J. M. Hydrazone as the directing group for Ir-catalyzed arene diborylations and sequential functionalizations. J. Am. Chem. Soc. 2012, 134, 4573-4576.
https://doi.org/10.1021/ja300308c

[14]. Plasencia, C.; Dayam, R.; Wang, Q.; Pinski, J.; Burke, T. R., Jr; Quinn, D. I.; Neamati, N. Discovery and preclinical evaluation of a novel class of small-molecule compounds in hormone-dependent and -independent cancer cell lines. Mol. Cancer Ther. 2005, 4, 1105-1113.
https://doi.org/10.1158/1535-7163.MCT-04-0288

[15]. Seow, H. A.; Penketh, P. G.; Shyam, K.; Rockwell, S.; Sartorelli, A. C. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy] carbonyl]hydrazine: an anticancer agent targeting hypoxic cells. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 9282-9287.
https://doi.org/10.1073/pnas.0409013102

[16]. Kolotova, N. V.; Koz'minykh, E. N.; Kolla, V. É.; Syropyatov, B. Y.; Voronina, E. V.; Koz'minykh, V. O. Substituted amides and hydrazides of 1,4-dicarboxylic acids. Part 7. Synthesis and pharmacological activity of some maleic, succinic, and phthalic acid acylhydrazides. Pharm. Chem. J. 1999, 33, 248-254.
https://doi.org/10.1007/BF02510044

[17]. Forsman, H.; Kalderén, C.; Nordin, A.; Nordling, E.; Jensen, A. J.; Dahlgren, C. Stable formyl peptide receptor agonists that activate the neutrophil NADPH-oxidase identified through screening of a compound library. Biochem. Pharmacol. 2011, 81, 402-411.
https://doi.org/10.1016/j.bcp.2010.11.005

[18]. Witkowski, P. T.; Schuenadel, L.; Wiethaus, J.; Bourquain, D. R.; Kurth, A.; Nitsche, A. Cellular impedance measurement as a new tool for poxvirus titration, antibody neutralization testing and evaluation of antiviral substances. Biochem. Biophys. Res. Commun. 2010, 401, 37-41.
https://doi.org/10.1016/j.bbrc.2010.09.003

[19]. He, M.; Cheng, N.; Gao, W.-W.; Zhang, M.; Zhang, Y.-Y.; Ye, R. D.; Wang, M.-W. Characterization of Quin-C1 for its anti-inflammatory property in a mouse model of bleomycin-induced lung injury. Acta Pharmacol. Sin. 2011, 32, 601-610.
https://doi.org/10.1038/aps.2011.4

[20]. Joshi, S. D.; Dixit, S. R.; Kulkarni, V. H.; Lherbet, C.; Nadagouda, M. N.; Aminabhavi, T. M. Synthesis, biological evaluation and in silico molecular modeling of pyrrolyl benzohydrazide derivatives as enoyl ACP reductase inhibitors. Eur. J. Med. Chem. 2017, 126, 286-297.
https://doi.org/10.1016/j.ejmech.2016.11.032

[21]. Liu, L.; Feng, S. Ligand-free Cu(ii)-mediated aerobic oxidations of aldehyde hydrazones leading to N,N′-diacylhydrazines and 1,3,4-oxadiazoles. Org. Biomol. Chem. 2017, 15, 2585-2592.
https://doi.org/10.1039/C7OB00042A

[22]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[23]. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[24]. Nardelli, M. PARST95 - an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. J. Appl. Crystallogr. 1995, 28, 659-659.
https://doi.org/10.1107/S0021889895007138

[25]. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X

[26]. Farrugia, L. J. ORTEP-3 for Windows - a version ofORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565-565.
https://doi.org/10.1107/S0021889897003117

[27]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Guy Orpen, A.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2 1987, S1-S19.
https://doi.org/10.1039/p298700000s1

[28]. Wardell, J. L.; Low, J. N.; Glidewell, C. N-(4-nitrobenzoyl)-N'-phenyl hydrazine: a three-dimensional hydrogen-bonded framework. Acta Crystallogr. C 2007, 63, o334-6.
https://doi.org/10.1107/S0108270107020628

[29]. Sharma, V.; Karmakar, I.; Brahmachari, G.; Gupta, V. K. Synthesis, spectroscopic characterization, crystal structure, theoretical (DFT) studies and molecular docking analysis of biologically potent isopropyl 5-chloro-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-car boxylate. Mol. Cryst. Liq. Cryst. 2022, 1-22.
https://doi.org/10.1080/15421406.2021.2024041

Supporting Agencies

University of Jammu, Jammu, India, for financial support under the Rashtriya Uchchatar Shiksha Abhiyan (RUSA) 2.0 Project (Ref. No, RUSA/JU/2/2019-20/111/3588-3636).
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).