European Journal of Chemistry

Synthesis, X-ray crystal structure, Hirshfeld surface analysis, and molecular docking studies of DMSO/H2O solvate of 5-chlorospiro[indoline-3,7'-pyrano[3,2-c:5,6-c']dichromene]-2,6',8'-trione

Crossmark


Main Article Content

Varun Sharma
Bubun Banerjee
Aditi Sharma
Vivek Kumar Gupta

Abstract

The title compound, 5-chlorospiro[indoline-3,7'-pyrano[3,2-c:5,6-c']dichromene]-2,6',8'-trione was synthesized via one-pot pseudo three-component reaction between one equivalent of 5-chloroisatin and two equivalents of 4-hydroxycoumarin using mandelic acid as catalyst in aqueous ethanol at 110 °C. The synthesized compound was characterized by FT-IR, 1H NMR, and HRMS techniques. Single crystals were grown for crystal structure determination by using single X-ray crystallography technique. It was found that the crystals are triclinic with space group P-1 and Z = 1. The crystal structure was solved by direct method and refined by full-matrix least-squares procedures to a final R-value of 0.0688 for 6738 observed reflections. The crystal structure was stabilized by elaborate system of O-H···O, N-H···O, and C-H···O interactions with the formation of supramolecular structures. 3D Hirshfeld surfaces and allied 2D fingerprint plots were analyzed for molecular interactions. Molecular docking studies have been performed to get insights into the inhibition property of this molecule for Human topoisomerase IIα.


icon graph This Abstract was viewed 754 times | icon graph Article PDF downloaded 284 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Sharma, V.; Banerjee, B.; Sharma, A.; Gupta, V. K. Synthesis, X-Ray Crystal Structure, Hirshfeld Surface Analysis, and Molecular Docking Studies of DMSO H2O Solvate of 5-chlorospiro[indoline-3,7’-pyrano[3,2-c:5,6-c’]dichromene]-2,6’,8’-Trione. Eur. J. Chem. 2021, 12, 382-388.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Banerjee, B.; Kaur, G.; Kaur, N. Curr. Org. Chem. 2021, 25 (1), 209-222.
https://doi.org/10.2174/1385272824999201019162655

[2]. Kaur, G.; Moudgil, R.; Shamim, M.; Gupta, V. K.; Banerjee, B. Synth. Commun. 2021, 51 (7), 1100-1120.
https://doi.org/10.1080/00397911.2020.1870043

[3]. Brahmachari, G.; Banerjee, B. ACS Sustain. Chem. Eng. 2014, 2 (3), 411-422.
https://doi.org/10.1021/sc400312n

[4]. Kaur, G.; Singh, D.; Singh, A.; Banerjee, B. Synth. Commun. 2021, 51 (7), 1045-1057.

[5]. Sharma, V.; Kaur, G.; Singh, A.; Banerjee, B.; Gupta, V. K. Crystallogr. Rep. 2020, 65 (7), 1195-1201.
https://doi.org/10.1134/S1063774520070172

[6]. Parthasarathy, K.; Praveen, C.; Saranraj, K.; Balachandran, C.; Kumar, P. S. Med. Chem. Res. 2016, 25 (10), 2155-2170.
https://doi.org/10.1007/s00044-016-1645-4

[7]. Sharma, V.; Banerjee, B.; Kaur, G.; Gupta, V. K. Eur. J. Chem. 2021, 12 (2), 187-191.
https://doi.org/10.5155/eurjchem.12.2.187-191.2086

[8]. Kaur, G.; Singh, A.; Kaur, N.; Banerjee, B. Synth. Commun. 2021, 51 (7), 1121-1131.
https://doi.org/10.1080/00397911.2021.1873383

[9]. Banik, B. K.; Banerjee, B.; Kaur, G.; Saroch, S.; Kumar, R. Molecules 2020, 25 (24), 5918.
https://doi.org/10.3390/molecules25245918

[10]. Banerjee, B. Curr. Org. Chem. 2018, 22 (3), 208-233.
https://doi.org/10.2174/1385272821666170703123129

[11]. Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Curr. Org. Chem. 2020, 23 (28), 3191-3205.
https://doi.org/10.2174/1385272823666191121144758

[12]. Banerjee, B.; Brahmachari, G. J. Chem. Res. 2014, 38 (12), 745-750.
https://doi.org/10.3184/174751914X14177132210020

[13]. Brahmachari, G.; Banerjee, B. ACS Sustain. Chem. Eng. 2014, 2 (12), 2802-2812.
https://doi.org/10.1021/sc500575h

[14]. Brahmachari, G.; Banerjee, B. Asian J. Org. Chem. 2016, 5 (2), 271-286.
https://doi.org/10.1002/ajoc.201500465

[15]. Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V. K.; Banerjee, B. Curr. Org. Chem. 2019, 23 (16), 1778-1788.
https://doi.org/10.2174/1385272822666190924182538

[16]. Singh, A.; Kaur, G.; Kaur, A.; Gupta, V. K.; Banerjee, B. Curr. Green Chem. 2020, 7 (1), 128-140.
https://doi.org/10.2174/2213346107666200228125715

[17]. Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V. K.; Banerjee, B. Synth. Commun. 2020, 50 (10), 1545-1560.
https://doi.org/10.1080/00397911.2020.1745844

[18]. Kaur, G.; Kumar, R.; Saroch, S.; Gupta, V. K.; Banerjee, B. Curr. Organocatalysis 2021, 8 (1), 147-159.
https://doi.org/10.2174/2213337207999200713145440

[19]. Sheldrick, G. M. Acta Crystallogr. A Found. Adv. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053273314026370

[20]. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30 (5), 565-565.
https://doi.org/10.1107/S0021889897003117

[21]. Nardelli, M. J. Appl. Crystallogr. 1995, 28 (5), 659-659.
https://doi.org/10.1107/S0021889895007138

[22]. Spek, A. L. Acta Crystallogr. D Biol. Crystallogr. 2009, 65 (Pt 2), 148-155.
https://doi.org/10.1107/S090744490804362X

[23]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. J. Appl. Crystallogr. 2021, 54 (Pt 3), 1006-1011.
https://doi.org/10.1107/S1600576721002910

[24]. Wei, H.; Ruthenburg, A. J.; Bechis, S. K.; Verdine, G. L. J. Biol. Chem. 2005, 280 (44), 37041-37047.
https://doi.org/10.1074/jbc.M506520200

[25]. Discovery Studio: Dassault Systems BIOVIA, Discovery Studio Modelling Environment, Release 4.5, Dassault Systems: San Diego, 2015. From

[26]. Farrugia, L. J. J. Appl. Crystallogr. 2012, 45 (4), 849-854.
https://doi.org/10.1107/S0021889812029111

[27]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, 12, S1-S19.
https://doi.org/10.1039/p298700000s1

[28]. Almansour, A. I.; Kumar, R. S.; Arumugam, N.; Kanagalaksmi, S.; Suresh, J. Acta Crystallogr. Sect. E Struct. Rep. Online 2012, 68 (Pt 4), o1172.
https://doi.org/10.1107/S1600536812000827

[29]. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11 (1), 19-32.
https://doi.org/10.1039/B818330A

[30]. Miller, G. J. Angew. Chem. Weinheim Bergstr. Ger. 1989, 101 (11), 1570-1571.
https://doi.org/10.1002/ange.19891011137

[31]. Hoffmann, R. Solids and Surfaces: A Chemist's View of Bonding in Extended Structures; VCH, 1988.
https://doi.org/10.21236/ADA196638

[32]. McKinnon, J. J.; Mitchell, A. S.; Spackman, M. A. Chemistry 1998, 4 (11), 2136-2141.
https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G

Supporting Agencies

University of Jammu, Jammu, India, Rashtriya Uchchatar Shiksha Abhiyan (RUSA) 2.0 Project. (Ref. No, RUSA/JU/2/ 2019-20/111/3588-3636).
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).