European Journal of Chemistry

A heterocyclic N'-(4-(diethylamino)-2-hydroxybenzylidene)-4-oxopiperidine-1-carbohydrazide Schiff base ligand and its metal complexes: Synthesis, structural characterization, thermal behavior, fluorescence properties, and biological activities

Crossmark


Main Article Content

Gajanan Mahadu Dongare
Anand Shankarrao Aswar

Abstract

A new heterocyclic hydrazone Schiff base ligand, N'-(4-(diethylamino)-2-hydroxy benzylidene)-4-oxopiperidine-1-carbohydrazide, (H2L) was derived by a condensation reaction of 4-oxopiperidine-1-carbohydrazide with 4-(diethylamino)-2-hydroxybenz-aldehyde. The ligand reacts with chloride salts of chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II) and zinc(II) to form metal complexes of [Cr(L)(Cl)(H2O)2], [Mn(HL)(Cl)(H2O)2], [Fe(L)(Cl)(H2O)2], [Co(HL)(Cl)(H2O)2], [Ni(HL)(Cl)(H2O)2], [Cu(HL)(Cl) (H2O)2], [Zn(L)(H2O)], respectively. The structure of the hydrazone ligand was confirmed by elemental analysis and spectroscopic techniques, viz., FT-IR, 1H NMR, 13C NMR, and LC-MS spectroscopy. The newly synthesized ligand behaves as a tridentate ONO donor towards Cr, Mn, Fe, Co, Ni, Cu, and Zn metal ions. The spectral, magnetic moment, and thermal data indicate the octahedral geometry for all metal complexes except for Zn, which has tetrahedral geometry with 1:1 stoichiometry (M:L). ESR study revealed that π-bonding covalency is much stronger than the σ-bonding with axial distortion in the structure. The molar conductivity data suggested the nonelectrolytic nature of the complexes. The powder X-ray diffraction patterns suggest the nanocrystalline nature of the compounds. The SEM micrograph of the ligand significantly differs from its Ni(II) complex indicating coordination of Ni(II) ion to the ligand. The intense fluorescence emitted in the region of λExcitation 521 to 524 nm due to the functional fluorophores of the ligand and its manganese (II), chromium(III), cobalt(II), and zinc(II) complexes. Various kinetic parameters such as Ea, ∆S, ∆H, and ∆G of various decomposition steps were calculated from TGA diagrams using Coats-Redfern method and the thermal stability order was found to be Cr < Fe < Co < Mn = Cu < Zn < Ni. The antibacterial and antifungal activities of the ligand and its divalent and trivalent metal complexes were performed against the various pathogens viz. Escherichia coli, Salmonella typhi, Staphylococcus aureus, Bacillus subtilis, Candida albicans, and Aspergillus niger with reference to standard antibiotics viz. ofloxacin, azithromycin, and fluconazole. All metal complexes showed promising biological activity as compared with their parent ligand and may be used as a potential antimicrobial candidate in biological science.


icon graph This Abstract was viewed 891 times | icon graph Article PDF downloaded 316 times

How to Cite
(1)
Dongare, G. M.; Aswar, A. S. A Heterocyclic N’-(4-(diethylamino)-2-Hydroxybenzylidene)-4-Oxopiperidine-1-Carbohydrazide Schiff Base Ligand and Its Metal Complexes: Synthesis, Structural Characterization, Thermal Behavior, Fluorescence Properties, and Biological Activities. Eur. J. Chem. 2022, 13, 415-425.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Backes, G. L.; Neumann, D. M.; Jursic, B. S. Synthesis and antifungal activity of substituted salicylaldehyde hydrazones, hydrazides and sulfohydrazides. Bioorg. Med. Chem. 2014, 22, 4629-4636.
https://doi.org/10.1016/j.bmc.2014.07.022

[2]. John, L.; Joseyphus, R. S.; Joe, I. H. Biomedical application studies of Schiff base metal complexes containing pyridine moiety: molecular docking and a DFT approach. SN Appl. Sci. 2020, 2, 500.
https://doi.org/10.1007/s42452-020-2274-6

[3]. Raj, V. A comprehensive review on the pharmacological activity of Schiff base containing derivatives. Org. Med. Chem. Int. J. 2017, 1, 88-102.
https://doi.org/10.19080/omcij.2017.01.555564

[4]. Hameed, A.; Al-Rashida, M.; Uroos, M.; Abid Ali, S.; Khan, K. M. Schiff bases in medicinal chemistry: a patent review (2010-2015). Expert Opin. Ther. Pat. 2017, 27, 63-79.
https://doi.org/10.1080/13543776.2017.1252752

[5]. Barta Holló, B.; Magyari, J.; Armaković, S.; Bogdanović, G. A.; Rodić, M. V.; Armaković, S. J.; Molnár, J.; Spengler, G.; Leovac, V. M.; Mészáros Szécsényi, K. Coordination compounds of a hydrazone derivative with Co(iii), Ni(ii), Cu(ii) and Zn(ii): synthesis, characterization, reactivity assessment and biological evaluation. New J Chem 2016, 40, 5885-5895.
https://doi.org/10.1039/C6NJ00560H

[6]. Govindasami, T.; Pandey, A.; Palanivelu, N.; Pandey, A. Synthesis, characterization and antibacterial activity of biologically important vanillin related hydrazone derivatives. Int. J. Org. Chem. (Irvine) 2011, 01, 71-77.
https://doi.org/10.4236/ijoc.2011.13012

[7]. Kaoukabi, H.; Kabri, Y.; Curti, C.; Taourirte, M.; Rodriguez-Ubis, J. C.; Snoeck, R.; Andrei, G.; Vanelle, P.; Lazrek, H. B. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur. J. Med. Chem. 2018, 155, 772-781.
https://doi.org/10.1016/j.ejmech.2018.06.028

[8]. Mistry, S.; Singh, A. K. Synthesis and in vitro antimicrobial activity of new steroidal hydrazone derivatives. Futur. J. Pharm. Sci. 2022, 8, 7.
https://doi.org/10.1186/s43094-021-00391-4

[9]. Pape, V. F. S.; Türk, D.; Szabó, P.; Wiese, M.; Enyedy, E. A.; Szakács, G. Synthesis and characterization of the anticancer and metal binding properties of novel pyrimidinylhydrazone derivatives. J. Inorg. Biochem. 2015, 144, 18-30.
https://doi.org/10.1016/j.jinorgbio.2014.12.015

[10]. Krishnamoorthy, P.; Sathyadevi, P.; Butorac, R. R.; Cowley, A. H.; Bhuvanesh, N. S. P.; Dharmaraj, N. Variation in the biomolecular interactions of nickel(II) hydrazone complexes upon tuning the hydrazide fragment. Dalton Trans. 2012, 41, 6842-6854.
https://doi.org/10.1039/c2dt30121k

[11]. Hruby, M.; Martínez, I. I. S.; Stephan, H.; Pouckova, P.; Benes, J.; Stepanek, P. Chelators for treatment of iron and copper overload: Shift from low-molecular-weight compounds to polymers. Polymers (Basel) 2021, 13, 3969.
https://doi.org/10.3390/polym13223969

[12]. Ponka, P.; Richardson, D. R.; Edward, J. T.; Chubb, F. L. Iron chelators of the pyridoxal isonicotinoyl hydrazone class. Relationship of the lipophilicity of the apochelator to its ability to mobilise iron from reticulocytes in vitro. Can. J. Physiol. Pharmacol. 1994, 72, 659-666.
https://doi.org/10.1139/y94-093

[13]. Santiago, P. H. O.; Santiago, M. B.; Martins, C. H. G.; Gatto, C. C. Copper(II) and zinc(II) complexes with Hydrazone: Synthesis, crystal structure, Hirshfeld surface and antibacterial activity. Inorganica Chim. Acta 2020, 508, 119632.
https://doi.org/10.1016/j.ica.2020.119632

[14]. Shao, B.; Aprahamian, I. Hydrazones as new molecular tools. Chem 2020, 6, 2162-2173.
https://doi.org/10.1016/j.chempr.2020.08.007

[15]. Liu, C.; Chen, M.-X.; Li, M. Synthesis, crystal structures, catalytic application and antibacterial activities of Cu(II) and Zn(II) complexes bearing salicylaldehyde-imine ligands. Inorganica Chim. Acta 2020, 508, 119639.
https://doi.org/10.1016/j.ica.2020.119639

[16]. Bansod, A.; Bhaskar, R.; Ladole, C.; Salunkhe, N.; Thakare, K.; Aswar, A. Mononuclear pyrazine-2-carbohydrazone metal complexes: Synthesis, structural assessment, thermal, biological, and electrical conductivity studies. Eur. J. Chem. 2022, 13, 126-134.
https://doi.org/10.5155/eurjchem.13.1.126-134.2186

[17]. Mukhtar, H.; Sani, U.; Shettima, U. A. Synthesis, physico-chemical and antimicrobial studies on metal (II) complexes with Schiff base derived from salicylaldehyde and 2,4-dinitrophenylhydrazine. Int. Res. J. Pure Appl. Chem. 2019, 1-8.
https://doi.org/10.9734/irjpac/2019/v19i230107

[18]. Martínez, S.; Igoa, F.; Carrera, I.; Seoane, G.; Veiga, N.; De Camargo, A. S. S.; Kremer, C.; Torres, J. A Zn(II) luminescent complex with a Schiff base ligand: solution, computational and solid state studies. J. Coord. Chem. 2018, 71, 874-889.
https://doi.org/10.1080/00958972.2018.1438607

[19]. Dianu, M. L.; Kriza, A.; Stanica, N.; Musuc, A. M. Transition metal M(II) complexes with isonicotinoylhydrazone-9-anthraldehyde. J. Serb. Chem. Soc. 2010, 75, 1515-1531.
https://doi.org/10.2298/JSC091113121D

[20]. Kharadi, G. J.; Patel, J. R.; Dholakiya, B. Z. Antituberculosis, antifungal and thermal activity of mixed ligand transition metal complexes. Appl. Organometal. Chem. 2010, 24, 821-827.
https://doi.org/10.1002/aoc.1711

[21]. Kumar, L. V.; Nath, G. R. Synthesis, characterization and biological studies of cobalt(II), nickel(II), copper(II) and zinc(II) complexes of vanillin-4-methyl-4-phenyl-3-thiosemicarbazone. J. Chem. Sci. (Bangalore) 2019, 131, 76.
https://doi.org/10.1007/s12039-019-1658-x

[22]. Ibrahim, K. M.; Gabr, I. M.; Zaky, R. R. Synthesis and magnetic, spectral and thermal eukaryotic DNA studies of some 2-acetylpyridine- [N-(3-hydroxy-2-naphthoyl)] hydrazone complexes. J. Coord. Chem. 2009, 62, 1100-1111.
https://doi.org/10.1080/00958970802464616

[23]. Kamalakannan, P.; Venkappayya, D. Spectral, Thermal, and Antimicrobial Studies on the Copper(II), Zinc(II), Cadmium(II), and Mercury(II) Chelates of a New Antimetabolite-5-Dimethylamino methyl-2-Thiouracil. Russ. J. Coord. Chem. 2002, 28, 423-433.

[24]. Shakir, M.; Hanif, S.; Sherwani, M. A.; Mohammad, O.; Al-Resayes, S. I. Pharmacologically significant complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) of novel Schiff base ligand, (E)-N-(furan-2-yl methylene) quinolin-8-amine: Synthesis, spectral, XRD, SEM, antimicrobial, antioxidant and in vitro cytotoxic studies. J. Mol. Struct. 2015, 1092, 143-159.
https://doi.org/10.1016/j.molstruc.2015.03.012

[25]. Selwin Joseyphus, R.; Sivasankaran Nair, M. Synthesis, charac-terization and antimicrobial activity of transition metal complexes with the Schiff base derived from imidazole-2-carboxaldehyde and glycylglycine. J. Coord. Chem. 2009, 62, 319-327.
https://doi.org/10.1080/00958970802236048

[26]. Purandara, H.; Foro, S.; Thimme Gowda, B. Comparison of the crystal structures and Hirshfeld surface analysis of five N-(4-methyl benzenesulfonyl)glycine hydrazone derivatives. Acta Crystallogr. C Struct. Chem. 2018, 74, 1553-1560.
https://doi.org/10.1107/S2053229618014420

[27]. Ganguly, S.; Karmakar, S.; Pal, C. K.; Chakravorty, A. Regiospecific oximato coordination at the oxygen site: Ligand design and low-spin MnII and FeII/III species. Inorg. Chem. 1999, 38, 5984-5987.
https://doi.org/10.1021/ic9907011

[28]. Xie, L.-Y.; Zhang, Y.; Xu, H.; Gong, C.-D.; Du, X.-L.; Li, Y.; Wang, M.; Qin, J. Synthesis, structure and bioactivity of Ni2+ and Cu2+ acylhydrazone complexes. Acta Crystallogr. C Struct. Chem. 2019, 75, 927-934.
https://doi.org/10.1107/S2053229619008040

[29]. Yernale, N. G.; Udayagiri, M. D.; Mruthyunjayaswam, B. H. M. Synthesis, characterization, mass spectral fragmentation, thermal study and biological evaluation of new Schiff base ligand and its metal(II) complexes derived from 4-(diethylamino)salicylaldehyde and thiazole moiety. Eur. J. Chem. 2016, 7, 56-65.
https://doi.org/10.5155/eurjchem.7.1.56-65.1372

[30]. Dgachi, S.; Rahmouni, F.; Soran, A.; Saoudi, M.; Nemes, G.; Naïli, H. A mononuclear Co(II) complex: Crystal structure, thermal behavior, optical properties and biological activities. J. Mol. Struct. 2021, 1244, 130996.
https://doi.org/10.1016/j.molstruc.2021.130996

[31]. Al-Hazmi, G. A.; El-Asmy, A. A. Synthesis, spectroscopy and thermal analysis of copper(II) hydrazone complexes. J. Coord. Chem. 2009, 62, 337-345.
https://doi.org/10.1080/00958970802226411

[32]. Taghizadeh, L.; Montazerozohori, M.; Masoudiasl, A.; Joohari, S.; White, J. M. New tetrahedral zinc halide Schiff base complexes: Synthesis, crystal structure, theoretical, 3D Hirshfeld surface analyses, antimicrobial and thermal studies. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 229-244.
https://doi.org/10.1016/j.msec.2017.03.150

[33]. Abdallah, S. M.; Mohamed, G. G.; Zayed, M. A.; Abou El-Ela, M. S. Spectroscopic study of molecular structures of novel Schiff base derived from o-phthaldehyde and 2-aminophenol and its coordination compounds together with their biological activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 73, 833-840.
https://doi.org/10.1016/j.saa.2009.04.005

[34]. Singh, B. K.; Jetley, U. K.; Sharma, R. K.; Garg, B. S. Synthesis, characterization and biological activity of complexes of 2-hydroxy-3,5-dimethylacetophenoneoxime (HDMAOX) with copper(II), cobalt(II), nickel(II) and palladium(II). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 68, 63-73.
https://doi.org/10.1016/j.saa.2006.11.001

[35]. Aysha, T.; Luňák, S., Jr; Lyčka, A.; Hrdina, R. Synthesis, absorption and fluorescence of hydrazone colorants based on pyrrolinone esters. Dyes Pigm. 2011, 91, 170-176.
https://doi.org/10.1016/j.dyepig.2011.03.013

[36]. Devi, J.; Sharma, S.; Kumar, S.; Jindal, D. K.; Dutta, P. P.; Kumar, D. Transition metal (II) complexes of hydrazones derived from tetralone: synthesis, spectral characterization, in vitro antimicrobial and cytotoxic studies. Res. chem. intermed. 2021, 47, 2433-2467.
https://doi.org/10.1007/s11164-021-04413-x

[37]. Joseph, J.; Rani, G. A. Antioxidant and biochemical activities of mixed ligand complexes. Appl. Biochem. Biotechnol. 2014, 172, 867-890.
https://doi.org/10.1007/s12010-013-0557-8

[38]. Babahan, I.; Emirdağ-Öztürk, S.; Poyrazoğlu-Çoban, E. Spectroscopic and biological studies of new mononuclear metal complexes of a bidentate NN and NO hydrazone-oxime ligand derived from egonol. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 141, 300-306.
https://doi.org/10.1016/j.saa.2014.12.074

[39]. Dimitrijević, T.; Novaković, I.; Radanović, D.; Novaković, S. B.; Rodić, M. V.; Anđelković, K.; Šumar-Ristović, M. Synthesis, spectral and structural characterization and biological activity of Cu(II) complexes with 4-(diethylamino)salicylaldehyde and α-diimines. J. Coord. Chem. 2020, 73, 702-716.
https://doi.org/10.1080/00958972.2020.1740212

[40]. Sivasankaran Nair, M.; Arish, D.; Johnson, J. Synthesis, characterization and biological studies on some metal complexes with Schiff base ligand containing pyrazolone moiety. J. Saudi Chem. Soc. 2016, 20, S591-S598.
https://doi.org/10.1016/j.jscs.2013.04.007

[41]. Panchal, P. K.; Pansuriya, P. B.; Patel, M. N. In-vitro biological evaluation of some ONS and NS donor Schiff's bases and their metal complexes. J. Enzyme Inhib. Med. Chem. 2006, 21, 453-458.
https://doi.org/10.1080/14756360600628551

[42]. Chang, E. L.; Simmers, C.; Knight, D. A. Cobalt complexes as antiviral and antibacterial agents. Pharmaceuticals (Basel) 2010, 3, 1711-1728.
https://doi.org/10.3390/ph3061711

[43]. Yadagiri, B.; Holagunda, U. D.; Bantu, R.; Nagarapu, L.; Guguloth, V.; Polepally, S.; Jain, N. Rational design, synthesis and anti-proliferative evaluation of novel benzosuberone tethered with hydrazide-hydrazones. Bioorg. Med. Chem. Lett. 2014, 24, 5041-5044.
https://doi.org/10.1016/j.bmcl.2014.09.018

[44]. Awantu, A. F.; Fongang, Y. S. F.; Ayimele, G. A.; Nantia, E. A.; Fokou, P. V. T.; Boyom, F. F.; Ngwang, C. K.; Lenta, B. N.; Ngouela, S. A. Novel hydralazine Schiff base derivatives and their antimicrobial, antioxidant and antiplasmodial properties. Int. J. Org. Chem. (Irvine) 2020, 10, 1-16.
https://doi.org/10.4236/ijoc.2020.101001

[45]. Anacona, J. R.; Rincones, M. Tridentate hydrazone metal complexes derived from cephalexin and 2-hydrazinopyridine: synthesis, characterization and antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 141, 169-175.
https://doi.org/10.1016/j.saa.2015.01.009

[46]. El-Sherif, A. A.; Shoukry, M. M.; Abd-Elgawad, M. M. A. Synthesis, characterization, biological activity and equilibrium studies of metal(II) ion complexes with tridentate hydrazone ligand derived from hydralazine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 98, 307-321.
https://doi.org/10.1016/j.saa.2012.08.034

Supporting Agencies

Sant Gadge Baba Amravati University, Amravati-444602, Maharashtra State, India.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX
publications
3
supporting
0
mentioning
0
contrasting
0
Smart Citations
3
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Downloads and views

Downloads

Metrics

PDF views
316
Dec 31 '22Jan 01 '23Jan 04 '23Jan 07 '23Jan 10 '23Jan 13 '23Jan 16 '23Jan 19 '23Jan 22 '23Jan 25 '23Jan 28 '235.0
| |
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).