European Journal of Chemistry

Synthesis, crystal structure, DFT/HF, Hirshfeld surface, and molecular docking analysis of 4-(tert-butyl)-4-nitro-1,1-biphenyl

Crossmark


Main Article Content

Neha Kumari
Ruchika Sharma
Archana Akaram Yadav
Sandeep Ashok Sankpal
Jayakumar Mohan Raj
Saminathan Murugavel
Rajni Kant

Abstract

4-(tert-Butyl)-4-nitro-1,1-biphenyl has been synthesized, and its structure has been characterized by using some spectroscopic and single-crystal X-ray diffraction techniques. It crystallizes in a monoclinic crystal system with space group P21/n and unit cell parameters: a = 6.4478(3) Å, b = 9.2477(4) Å, c = 23.4572(9) Å, β = 95.114(4)°, = 1393.11(10) Å3, Z = 4. The molecular structure has been solved by using the intrinsic phasing method. The crystal structure is stabilized by C-H···O interactions. Computational studies were performed using density functional theory (DFT) and Hartree-Fock (HF) methods. The optimized geometry obtained from DFT and HF in the gas phase was compared with solid-phase experimental data retrieved from single-crystal X-ray diffraction results. Frontier molecular orbitals, such as the HOMO/LUMO energy gap, the molecular electrostatic potential, and Mulliken atomic charges, have been investigated. The HOMO LUMO energy gap of 3.97 eV indicates that the molecule is soft and highly reactive. The Hirshfeld surface analysis and their associated fingerprint plots have been used to quantitatively validate the interactions. Further insilico molecular docking studies have been performed with the molecular target Type-II topoisomerase (PDB ID: 1JIJ) and their results suggest that 4-(tert-butyl)-4-nitro-1,1-biphenyl could be considered an anticancer drug.


icon graph This Abstract was viewed 451 times | icon graph Article PDF downloaded 159 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Kumari, N.; Sharma, R.; Yadav, A. A.; Sankpal, S. A.; Raj, J. M.; Murugavel, S.; Kant, R. Synthesis, Crystal Structure, DFT HF, Hirshfeld Surface, and Molecular Docking Analysis of 4-(tert-Butyl)-4-Nitro-1,1-Biphenyl. Eur. J. Chem. 2023, 14, 90-98.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Jain, Z. J.; Gide, P. S.; Kankate, R. S. Biphenyls and their derivatives as synthetically and pharmacologically important aromatic structural moieties. Arab. J. Chem. 2017, 10, S2051-S2066.
https://doi.org/10.1016/j.arabjc.2013.07.035

[2]. Bridges, J. W.; Creaven, P. J.; Williams, R. T. The fluorescence of some biphenyl derivatives. Biochem. J. 1965, 96, 872-878.
https://doi.org/10.1042/bj0960872

[3]. Yamamura, K.; Ono, S.; Tabushi, I. New liquid crystals having 4,4′-biphenanthryl core. Tetrahedron Lett. 1988, 29, 1797-1798.
https://doi.org/10.1016/S0040-4039(00)82046-8

[4]. Hohnholz, D.; Schweikart, K.-H.; Subramanian, L. R.; Wedel, A.; Wischert, W.; Hanack, M. Synthesis and studies on luminescent biphenyl compounds. Synth. Met. 2000, 110, 141-152.
https://doi.org/10.1016/S0379-6779(99)00291-X

[5]. Cincinelli, R.; Zwick, V.; Musso, L.; Zuco, V.; De Cesare, M.; Zunino, F.; Simoes-Pires, C.; Nurisso, A.; Giannini, G.; Cuendet, M.; Dallavalle, S. Biphenyl-4-yl-acrylohydroxamic acids: Identification of a novel indolyl-substituted HDAC inhibitor with antitumor activity. Eur. J. Med. Chem. 2016, 112, 99-105.
https://doi.org/10.1016/j.ejmech.2016.02.001

[6]. Lee, C.-Y.; Choi, H.; Park, E.-Y.; Nguyen, T.-T.-L.; Maeng, H.-J.; Mee Lee, K.; Jun, H.-S.; Shin, D. Synthesis and anti-diabetic activity of novel biphenylsulfonamides as glucagon receptor antagonists. Chem. Biol. Drug Des. 2021, 98, 733-750.
https://doi.org/10.1111/cbdd.13928

[7]. Pisano, M.; Dettori, M. A.; Fabbri, D.; Delogu, G.; Palmieri, G.; Rozzo, C. Anticancer activity of two novel hydroxylated biphenyl compounds toward malignant melanoma cells. Int. J. Mol. Sci. 2021, 22, 5636.
https://doi.org/10.3390/ijms22115636

[8]. Zhao, D.; Zhao, S.; Zhao, L.; Zhang, X.; Wei, P.; Liu, C.; Hao, C.; Sun, B.; Su, X.; Cheng, M. Discovery of biphenyl imidazole derivatives as potent antifungal agents: Design, synthesis, and structure-activity relationship studies. Bioorg. Med. Chem. 2017, 25, 750-758.
https://doi.org/10.1016/j.bmc.2016.11.051

[9]. Deep, A.; Jain, S.; Sharma, P. C. Synthesis and anti-inflammatory activity of some novel biphenyl-4-carboxylic acid 5-(arylidene)-2-(aryl)-4-oxothiazolidin-3-yl amides. Acta Pol. Pharm. 2010, 67, 63-67.

[10]. Morawska, K.; Jedlińska, K.; Smarzewska, S.; Metelka, R.; Ciesielski, W.; Guziejewski, D. Analysis and DNA interaction of the profluralin herbicide. Environ. Chem. Lett. 2019, 17, 1359-1365.
https://doi.org/10.1007/s10311-019-00865-1

[11]. Ghatge, S.; Yang, Y.; Moon, S.; Song, W.-Y.; Kim, T.-Y.; Liu, K.-H.; Hur, H.-G. A novel pathway for initial biotransformation of dinitroaniline herbicide butralin from a newly isolated bacterium Sphingopyxis sp. strain HMH. J. Hazard. Mater. 2021, 402, 123510.
https://doi.org/10.1016/j.jhazmat.2020.123510

[12]. Tavera-Hernández, R.; Jiménez-Estrada, M.; Alvarado-Sansininea, J. J.; Nieto-Camacho, A.; López-Muñoz, H.; Sánchez-Sánchez, L.; Escobar, M. L. Synthesis of chrysin, quercetin and naringin nitroderivatives: Antiproliferative, anti-inflammatory and antioxidant activity. Lett. Drug Des. Discov. 2021, 18, 795-805.
https://doi.org/10.2174/1570180818666210122162313

[13]. Ribeiro, T. A.; Machado-Ferreira, E.; Guimarães, L. F.; Cavaleiro, J.; Britto, A. M. A.; Redua, N.; de Souza, L. M. P.; Pimentel, A. S.; Picciani, P. H. S.; Oliveira, O. N., Jr; Barreto, C. B.; Soares, C. A. G. Novel cytotoxic amphiphilic nitro-compounds derived from a synthetic route for paraconic acids. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 126984.
https://doi.org/10.1016/j.colsurfa.2021.126984

[14]. Adedapo, A. D. A.; Ajayi, A. M.; Ekwunife, N. L.; Falayi, O. O.; Oyagbemi, A.; Omobowale, T. O.; Adedapo, A. A. Antihypertensive effect of Phragmanthera incana (Schum) Balle on NG-nitro-L-Arginine methyl ester (L-NAME) induced hypertensive rats. J. Ethnopharmacol. 2020, 257, 112888.
https://doi.org/10.1016/j.jep.2020.112888

[15]. Rice, A. M.; Long, Y.; King, S. B. Nitroaromatic antibiotics as nitrogen oxide sources. Biomolecules 2021, 11, 267.
https://doi.org/10.3390/biom11020267

[16]. Becker, F. F.; Mukhopadhyay, C.; Hackfeld, L.; Banik, I.; Banik, B. K. Polycyclic aromatic compounds as anticancer agents: synthesis and biological evaluation of dibenzofluorene derivatives. Bioorg. Med. Chem. 2000, 8, 2693-2699.
https://doi.org/10.1016/S0968-0896(00)00213-3

[17]. Bisel, P.; Al-Momani, L.; Müller, M. The tert-butyl group in chemistry and biology. Org. Biomol. Chem. 2008, 6, 2655-2665.
https://doi.org/10.1039/b800083b

[18]. Chkirate, K.; Akachar, J.; Hni, B.; Hökelek, T.; Anouar, E. H.; Talbaoui, A.; Mague, J. T.; Sebbar, N. K.; Ibrahimi, A.; Essassi, E. M. Synthesis, spectroscopic characterization, crystal structure, DFT, ESI-MS studies, molecular docking and in vitro antibacterial activity of 1,5-benzodiazepin-2-one derivatives. J. Mol. Struct. 2022, 1247, 131188.
https://doi.org/10.1016/j.molstruc.2021.131188

[19]. Carvalho, A. J. P.; Dordio, A. V.; Ramalho, J. P. P. A DFT study on the adsorption of benzodiazepines to vermiculite surfaces. J. Mol. Model. 2014, 20, 2336.
https://doi.org/10.1007/s00894-014-2336-z

[20]. Hok, L.; BoŽičević, L.; Sremec, H.; Šakić, D.; Vrček, V. Racemization of oxazepam and chiral 1,4-benzodiazepines. DFT study of the reaction mechanism in aqueous solution. Org. Biomol. Chem. 2019, 17, 1471-1479.
https://doi.org/10.1039/C8OB02991A

[21]. Ganjali Koli, M.; Azizi, K. Investigation of benzodiazepines (BZDs) in a DPPC lipid bilayer: Insights from molecular dynamics simulation and DFT calculations. J. Mol. Graph. Model. 2019, 90, 171-179.
https://doi.org/10.1016/j.jmgm.2019.04.012

[22]. McClendon, A. K.; Osheroff, N. DNA topoisomerase II, genotoxicity, and cancer. Mutat. Res. 2007, 623, 83-97.
https://doi.org/10.1016/j.mrfmmm.2007.06.009

[23]. Gibson, E. G.; Bax, B.; Chan, P. F.; Osheroff, N. Mechanistic and structural basis for the actions of the antibacterial gepotidacin against Staphylococcus aureus gyrase. ACS Infect. Dis. 2019, 5, 570-581.
https://doi.org/10.1021/acsinfecdis.8b00315

[24]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[25]. Sheldrick, G. M. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3-8.
https://doi.org/10.1107/S2053273314026370

[26]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726

[27]. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X

[28]. Nardelli, M. Parst: A system of fortran routines for calculating molecular structure parameters from results of crystal structure analyses. Comput. Chem. 1983, 7, 95-98.
https://doi.org/10.1016/0097-8485(83)85001-3

[29]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0- new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[30]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[31]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, rev. A.01, Gaussian Inc. , Wallingford CT, 2013.

[32]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc.; Shawnee Mission, KS, 2016.

[33]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910

[34]. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785-2791.
https://doi.org/10.1002/jcc.21256

[35]. Pai, E. F.; Krengel, U.; Petsko, G. A.; Goody, R. S.; Kabsch, W.; Wittinghofer, A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990, 9, 2351-2359.
https://doi.org/10.1002/j.1460-2075.1990.tb07409.x

[36]. Dassault Systѐmes BIOVIA, BIOVIA Workbook, Release 2021; BIOVIA DS Visualizer, Release 2021, San Diego: Dassault Systѐmes, 2021. https://discover.3ds.com/discovery-studio-visualizer-download (accessed 2022 -05 -14).

[37]. Rajnikant; Gupta, V. K.; Kumar, A.; Bamezai, R. K.; Sharma, N. K. Crystallography of 4,4 - bis-(n-propylamino) - biphenyl [C18N2H24]. Mol. Cryst. Liq. Cryst. 1999, 333, 237-242.
https://doi.org/10.1080/10587259908026007

[38]. Rajnikant; Dinesh; Singh, D. X-ray structure determination and analysis of hydrogen interactions in 3, 3′-dimethoxybiphenyl. Bull. Mater. Sci. (India) 2004, 27, 31-34.
https://doi.org/10.1007/BF02708481

[39]. Dhankhar, J.; González-Fernández, E.; Dong, C.-C.; Mukhopadhyay, T. K.; Linden, A.; Čorić, I. Spatial anion control on palladium for mild C-H arylation of Arenes. J. Am. Chem. Soc. 2020, 142, 19040-19046.
https://doi.org/10.1021/jacs.0c09611

[40]. Sharif, M.; Zeeshan, M.; Reimann, S.; Villinger, A.; Langer, P. One-pot synthesis of fluorinated terphenyls by site-selective Suzuki-Miyaura reactions of 1,4-dibromo-2-fluorobenzene. Tetrahedron Lett. 2010, 51, 2810-2812.
https://doi.org/10.1016/j.tetlet.2010.03.067

[41]. Zazouli, S.; Lâallam, L.; Ketatni, E. M. Synthesis of novel benzohydrazide and benzoic acid derivatives: Crystal Structure, Hirshfeld surface analysis and DFT computational studies. J. Mol. Struct. 2021, 1239, 130465.
https://doi.org/10.1016/j.molstruc.2021.130465

[42]. Aihara, J.-I. Weighted HOMO-LUMO energy separation as an index of kinetic stability for fullerenes. Theor. Chem. Acc. 1999, 102, 134-138.
https://doi.org/10.1007/s002140050483

[43]. Sallam, H. H.; Mohammed, Y. H. E.; Al-Ostoot, F. H.; Sridhar, M. A.; Khanum, S. A. Synthesis, structure analysis, DFT calculations, Hirshfeld surface studies, and energy frameworks of 6-Chloro-3-[(4-chloro-3-methylphenoxy)methyl][1,2,4]triazolo[4,3-b]pyridazine. J. Mol. Struct. 2021, 1237, 130282.
https://doi.org/10.1016/j.molstruc.2021.130282

[44]. Manne, R.; Åberg, T. Koopmans' theorem for inner-shell ionization. Chem. Phys. Lett. 1970, 7, 282-284.
https://doi.org/10.1016/0009-2614(70)80309-8

[45]. Priya, M. K.; Revathi, B. K.; Renuka, V.; Sathya, S.; Asirvatham, P. S. Molecular structure, spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) analysis, HOMO-LUMO energies, Mulliken, MEP and thermal properties of new chalcone derivative by DFT calculation. Mater. Today 2019, 8, 37-46.
https://doi.org/10.1016/j.matpr.2019.02.078

[46]. Somagond, S. M.; Wari, M. N.; Shaikh, S. K. J.; Inamdar, S. R.; Shankar, M. K.; Prasad, D. J.; Kamble, R. R. Detailed analytical studies of 1,2,4-triazole derivatized quinoline. Eur. J. Chem. 2019, 10, 281-294.
https://doi.org/10.5155/eurjchem.10.4.281-294.1844

[47]. Moro, S.; Bacilieri, M.; Ferrari, C.; Spalluto, G. Autocorrelation of molecular electrostatic potential surface properties combined with partial least squares analysis as alternative attractive tool to generate ligand-based 3D-QSARs. Curr. Drug Discov. Technol. 2005, 2, 13-21.
https://doi.org/10.2174/1570163053175439

[48]. Mathammal, R.; Sangeetha, K.; Sangeetha, M.; Mekala, R.; Gadheeja, S. Molecular structure, vibrational, UV, NMR, HOMO-LUMO, MEP, NLO, NBO analysis of 3,5 di tert butyl 4 hydroxy benzoic acid. J. Mol. Struct. 2016, 1120, 1-14.
https://doi.org/10.1016/j.molstruc.2016.05.008

[49]. Spackman, M. A.; McKinnon, J. J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378-392.
https://doi.org/10.1039/B203191B

[50]. Singh, M.; Anthal, S.; Srijana, P. J.; Narayana, B.; Sarojini, B. K.; Likhitha, U.; Kamal; Kant, R. Novel supramolecular co-crystal of 3-aminobenzoic acid with 4-acetyl-pyridine: Synthesis, X-ray structure, DFT and Hirshfeld surface analysis. J. Mol. Struct. 2022, 1262, 133061.
https://doi.org/10.1016/j.molstruc.2022.133061

Supporting Agencies

University of Jammu for funding under the Rashtriya Uchchatar Shiksha Abhiyan (RUSA) 2.0 project of the Government of India.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).