European Journal of Chemistry 2023, 14(1), 155-164 | doi: | Get rights and content

Issue cover



Metal(II) triazole complexes: Synthesis, biological evaluation, and analytical characterization using machine learning-based validation

Muhammad Yousaf Arshad (1,*) orcid , Aqsa Rashid (2) orcid , Faisal Mahmood (3) orcid , Salaha Saeed (4) orcid , Anam Suhail Ahmed (5) orcid

(1) Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Engineering and Technology, Lahore, 54000, Pakistan
(2) Department of Chemistry, Faculty of Applied Sciences, Government College Women University, Faisalabad, 38000, Pakistan
(3) Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
(4) Institute of Environmental Engineering and Research, Faculty of Civil Engineering, University of Engineering and Technology, Lahore, 54000, Pakistan
(5) Mud-Logging and Well Drilling Department, Halliburton Company, Delaware, 19720, United States of America
(*) Corresponding Author

Received: 24 Dec 2022 | Revised: 26 Jan 2023 | Accepted: 06 Feb 2023 | Published: 31 Mar 2023 | Issue Date: March 2023


The synthesis of many transition metal complexes containing 3,5-diamino-1,2,4-triazole (Hdatrz) as a ligand with different counter anions Br, Cl, ClO4 and SO42- has been studied extensively, but the chemistry of transition metal nitrate and acetate compounds and their reactivity are relatively unexplored. In this research work, two new series of metal(II) complexes (M = Ni, Co, and Zn) {[Ni3(Hdatrz)6(H2O)6](NO3)6 (1), [Co3(Hdatrz)6(H2O)6](NO3)6 (2), [Zn3(Hdatrz)6(H2O)6](NO3)6 (3), [Ni3(Hdatrz)6(H2O)6](OAc)6 (4), [Co3(Hdatrz)6(H2O)6] (OAc)6 (5) and [Zn3(Hdatrz)6(H2O)6](OAc)6 (6)} have been synthesized. These synthesized complexes were characterized by various physicochemical techniques such as UV-vis spectroscopy, Fourier transform infrared spectroscopy, and magnetic susceptibility measurements. All six complexes were found to be trinuclear and bridged through the Hdatrz ligand. Spectral data suggested a distorted octahedral environment around the central metal ions in these complexes. It also revealed that the NH and OH groups are involved in hydrogen bonding. These complexes were tested against the fungal strains Colletotrichum gloeosporioides and Aspergillus niger. These synthesized complexes have not been observed to have antifungal activities. The machine learning K-nearest neighbours evaluates the analytical characteristics and solubility behavior of the metal complexes. Machine learning models provide results with 75% precision.


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).

European Journal of Chemistry


Complexes; Fungal strains; Transition metal; Machine learning; K-Nearest neighbors

Full Text:

PDF    Open Access

DOI: 10.5155/eurjchem.14.1.155-164.2396

Links for Article

| | | | | | |

| | | | | | |

| | | |

Related Articles

Article Metrics

icon graph This Abstract was viewed 282 times | icon graph PDF Article downloaded 51 times



[1]. Muhammad Yousaf Arshad, Muhammad Azam Saeed, Muhammad Wasim Tahir, Halina Pawlak-Kruczek, Anam Suhail Ahmad, Lukasz Niedzwiecki
Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor
Energies  16(15), 5835, 2023
DOI: 10.3390/en16155835


[1]. Mendil, D.; Uluözlü, O. D.; Tüzen, M.; Soylak, M. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry. J. Hazard. Mater. 2009, 165, 724-728.

[2]. Aslantaş, M.; Kendi, E.; Demir, N.; Sabik, A. E.; Tümer, M.; Kertmen, M. Synthesis, spectroscopic, structural characterization, electrochemical and antimicrobial activity studies of the Schiff base ligand and its transition metal complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 74, 617-624.

[3]. Al-Masoudi, N. A.; Aziz, N. M.; Mohammed, A. T. Synthesis andIn VitroAnti-HIV Activity of Some New Schiff Base Ligands Derived from 5-Amino-4-phenyl-4H-1,2,4-triazole-3-thiol and Their Metal Complexes. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184, 2891-2901.

[4]. Deswal, Y.; Asija, S.; Kumar, D.; Jindal, D. K.; Chandan, G.; Panwar, V.; Saroya, S.; Kumar, N. Transition metal complexes of triazole-based bioactive ligands: synthesis, spectral characterization, antimicrobial, anticancer and molecular docking studies. Res. Chem. Intermed. 2022, 48, 703-729.

[5]. Aromí, G.; Barrios, L. A.; Roubeau, O.; Gamez, P. Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coord. Chem. Rev. 2011, 255, 485-546.

[6]. Jin, X.; Xu, C.-X.; Yin, X.; He, P.; Zhang, J.-G. A 1D cadmium complex with 3,4-diamino-1,2,4-triazole as ligand: synthesis, molecular structure, characterization, and theoretical studies. J. Coord. Chem. 2015, 68, 1913-1925.

[7]. Haddad, R.; Yousif, E.; Ahmed, A. Synthesis and characterization of transition metal complexes of 4-Amino-5-pyridyl-4H-1,2,4-triazole-3-thiol. Springerplus 2013, 2, 510.

[8]. Haasnoot, J. G. Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands. Coord. Chem. Rev. 2000, 200-202, 131-185.

[9]. Bräunlich, I.; Medvedev, M.; Dshemuchadse, J.; Wörle, M.; Caseri, W. Trinuclear Complexes of Nickel(II) and 4-Amino-1,2,4-triazole: Trinuclear Complexes of Nickel(II) and 4-Amino-1,2,4-triazole. Z. Anorg. Allg. Chem. 2015, 641, 2344-2349.

[10]. Fang, B.; Zhou, C.-H.; Rao, X.-C. Synthesis and biological activities of novel amine-derived bis-azoles as potential antibacterial and antifungal agents. Eur. J. Med. Chem. 2010, 45, 4388-4398.

[11]. Al-Soud, Y. A.; Al-Masoudi, N. A.; Ferwanah, A. E.-R. S. Synthesis and properties of new substituted 1,2,4-triazoles: potential antitumor agents. Bioorg. Med. Chem. 2003, 11, 1701-1708.

[12]. Bayrak, H.; Demirbas, A.; Karaoglu, S. A.; Demirbas, N. Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur. J. Med. Chem. 2009, 44, 1057-1066.

[13]. Kane, J. M.; Dudley, M. W.; Sorensen, S. M.; Miller, F. P. 2,4-Dihydro-3H-1,2,4-triazole-3-thiones as potential antidepressant agents. J. Med. Chem. 1988, 31, 1253-1258.

[14]. Karrouchi, K.; Chemlal, L.; Taoufik, J.; Cherrah, Y.; Radi, S.; El Abbes Faouzi, M.; Ansar, M. Synthesis, antioxidant and analgesic activities of Schiff bases of 4-amino-1,2,4-triazole derivatives containing a pyrazole moiety. Ann. Pharm. Fr. 2016, 74, 431-438.

[15]. Al-Shemary, R. K. Design, synthesis and biological evaluation of Schiff bases and their co(II), cu(II), Ni(II) chelates from derivative containing indole moiety bearing-triazole. Eur. Chem. Bull. 2017, 6, 433-439.

[16]. Gispert, J. R. Coordination chemistry; Wiley-VCH: Weinheim, Germany, 2008.

[17]. Zoubi, W. A. Biological activities of Schiff bases and their complexes: A review of recent works. Int. J. Org. Chem. (Irvine) 2013, 03, 73-95.

[18]. Turel, I. Special issue: Practical applications of metal complexes. Molecules 2015, 20, 7951-7956.

[19]. Zhang, G.-F.; Gao, L.; Li, P.; Zhao, F.-Q.; Fan, X.-Z.; Chen, N.; Xiang, X.-P.; Gao, H.-C.; Wang, J. Structural diversity in trinuclear nickel(II) complexes of 3,5-diamino-1,2,4-triazole. J. Coord. Chem. 2011, 64, 3551-3559.

[20]. Balouiri, M.; Sadiki, M.; Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71-79.

[21]. Singh, K.; Kumar, Y.; Puri, P.; Sharma, C.; Aneja, K. R. Metal-based biologically active compounds: synthesis, spectral, and antimicrobial studies of cobalt, nickel, copper, and zinc complexes of triazole-derived schiff bases. Bioinorg. Chem. Appl. 2011, 2011, 901716.

[22]. Singh, K.; Kumar, Y.; Puri, P.; Sharma, C.; Aneja, K. R. Antimicrobial, spectral and thermal studies of divalent cobalt, nickel, copper and zinc complexes with triazole Schiff bases. Arab. J. Chem. 2017, 10, S978-S987.

[23]. Shakirova, O.G., Lavrenova, L.G., Shvedenkov, Y.G. Synthesis and Physicochemical Study of Iron(II), Cobalt(II), Nickel(II), and Copper(II) Complexes with 4-(2-Pyridyl)-1,2,4-Triazole. Russian Journal of Coordination Chemistry 2004, 30, 473-479.

[24]. Nfor, E. N.; Keenan, L. L.; Nenwa, J.; Ndifon, P. T.; Njong, R. N.; Dzesse, C. N. T.; Offiong, O. E. A novel mixed ligand dinuclear complex of cobalt (II): Synthesis, characterization and magnetic studies. Cryst. Struct. Theory Appl. 2014, 03, 22-29.

[25]. Raouf, H.; Beyramabadi, S. A.; Allameh, S.; Morsali, A. Synthesis, experimental and theoretical characterizations of a 1,2,4-triazole Schiff base and its nickel(II) complex. J. Mol. Struct. 2019, 1179, 779-786.

[26]. Tyagi, P.; Tyagi, M.; Agrawal, S.; Chandra, S.; Ojha, H.; Pathak, M. Synthesis, characterization of 1,2,4-triazole Schiff base derived 3d- metal complexes: Induces cytotoxicity in HepG2, MCF-7 cell line, BSA binding fluorescence and DFT study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 171, 246-257.

[27]. Creaven, B. S.; Devereux, M.; Foltyn, A.; McClean, S.; Rosair, G.; Thangella, V. R.; Walsh, M. Quinolin-2(1H)-one-triazole derived Schiff bases and their Cu(II) and Zn(II) complexes: Possible new therapeutic agents. Polyhedron 2010, 29, 813-822.

[28]. Ugryumov, I. A.; Ilyushin, M. A.; Tselinskii, I. V.; Kozlov, A. S. Synthesis and Properties of Photosensitive Complex Perchlorates of d Metals with 3(5)-Hydrazino-4-amino-1,2,4-triazole as Ligand. Russ. J. Appl. Chem. 2003, 76, 439-441.

[29]. Bharty, M. K.; Bharati, P.; Bharti, A.; Singh, A.; Singh, S.; Singh, N. K. Syntheses, spectral and structural characterization of Ni(II) complexes of 4-amino-5-phenyl/3-pyridyl/thiophen-2H-1,2,4-triazole-3-thione. J. Mol. Struct. 2014, 1056-1057, 326-332.

[30]. Xin, Y. I. N.; Xin, J. I. N.; Cai-Xia, X. U.; Piao, H. E.; Wang, K.; Zhang, J.-G. Synthesis and characterization of four energetic transition metal complexes of 3, 4-diamino-1, 2, 4-triazole. Central European Journal of Energetic Materials 13, 301-320.

[31]. Zhang, Y.-L.; Chen, S.-P.; Gao, S.-L. Synthesis and characterization of new M-triazole complexes (M = co, cu, Zn). Z. Anorg. Allg. Chem. 2009, 635, 537-543.

[32]. Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Facile synthesis of a novel zinc-triazole complex for simultaneous improvement in fire safety and mechanical properties of epoxy resins. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106284.

[33]. Singh, K.; Singh, D. P.; Barwa, M. S.; Tyagi, P.; Mirza, Y. Antibacterial Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff bases derived from fluorobenzaldehyde and triazoles. J. Enzyme Inhib. Med. Chem. 2006, 21, 557-562.

[34]. Gaber, M.; El-Wakiel, N. A.; El-Ghamry, H.; Fathalla, S. K. Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol. J. Mol. Struct. 2014, 1076, 251-261.

[35]. Zhang, X.-Y.; Liu, Z.-Y.; Xia, Y.-F.; Zhang, Y.-Y.; Yang, E.-C.; Zhao, X.-J. Three 3-amino-1,2,4-triazole-based cobalt(II) complexes incorpo-rating with different carboxylate coligands: synthesis, crystal structures, and magnetic behavior. J. Coord. Chem. 2013, 66, 4399-4414.

[36]. Singh, A. K.; Pandey, O. P.; Sengupta, S. K. Synthesis, spectral characterization and biological activity of zinc(II) complexes with 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole Schiff bases. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 85, 1-6.

[37]. Nagendra Prasad, H. S.; Karthik, C. S.; Mallesha, L.; Mallu, P. A short review on biological activity of triazole containing metal complexes. Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry 2014, 2, 214-229.

[38]. Altalbawy, F. M. A.; Mohamed, G. G.; Abou El-Ela Sayed, M.; Mohamed, M. I. A. Synthesis, characterization, and biological activity of some transition metal complexes with Schiff base ligands derived from 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and salicaldehyde. Monatsh. Chem. 2012, 143, 79-89.

[39]. Arshad, Y. M.; Rashid, A.; Gul, H.; Ahmad, A. S.; Jabbar, F. Optimization of acid-assisted extraction of pectin from banana (Musa Acuminata) peels by central composite design. Glob. NEST J. 2022, 24, 752-756.

[40]. Dhomse, B. K.; Mahale, M. K. Study of machine learning algorithms for special disease prediction using principal of component analysis. In 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC); IEEE, 2016.

[41]. Musumeci, F.; Rottondi, C.; Nag, A.; Macaluso, I.; Zibar, D.; Ruffini, M.; Tornatore, M. An overview on application of machine learning techniques in optical networks. IEEE Commun. Surv. Tutor. 2019, 21, 1383-1408.

[42]. Berk, R. A.; Sorenson, S. B.; Barnes, G. Forecasting domestic violence: A machine learning approach to help inform arraignment decisions: Forecasting domestic violence. J. Empir. Leg. Stud. 2016, 13, 94-115.

[43]. Saeed, M. A.; Niedzwiecki, L.; Arshad, M. Y.; Skrinsky, J.; Andrews, G. E.; Phylaktou, H. N. Combustion and explosion characteristics of pulverised wood, valorized with mild pyrolysis in pilot scale installation, using the modified ISO 1 m3 dust explosion vessel. Appl. Sci. (Basel) 2022, 12, 12928.

[44]. Zhang, S.; Cheng, D.; Deng, Z.; Zong, M.; Deng, X. A novel k NN algorithm with data-driven k parameter computation. Pattern Recognit. Lett. 2018, 109, 44-54.

[45]. Gul, H.; Arshad, M. Y.; Tahir, M. W. Production of H2 via sorption enhanced auto-thermal reforming for small scale Applications-A process modeling and machine learning study. Int. J. Hydrogen Energy 2023,

[46]. Sharma, S.; Sharma, D. Intelligently applying artificial intelligence in chemoinformatics. Curr. Top. Med. Chem. 2018, 18, 1804-1826.

[47]. Cordeiro de Amorim, R.; Makarenkov, V.; Mirkin, B. A-Ward pβ : Effective hierarchical clustering using the Minkowski metric and a fast k -means initialisation. Inf. Sci. (Ny) 2016, 370-371, 343-354.

[48]. Piotrowski, Z.; Szypulska, M. Classification of falling asleep states using HRV analysis. Biocybern. Biomed. Eng. 2017, 37, 290-301.

[49]. Yar, A.; Arshad, M. Y.; Asghar, F.; Amjad, W.; Asghar, F.; Hussain, M. I.; Lee, G. H.; Mahmood, F. Machine learning-based relative performance analysis of monocrystalline and polycrystalline grid-tied PV systems. Int. J. Photoenergy 2022, 2022, 1-18, 3186378

How to cite

Arshad, M.; Rashid, A.; Mahmood, F.; Saeed, S.; Ahmed, A. Eur. J. Chem. 2023, 14(1), 155-164. doi:10.5155/eurjchem.14.1.155-164.2396
Arshad, M.; Rashid, A.; Mahmood, F.; Saeed, S.; Ahmed, A. Metal(II) triazole complexes: Synthesis, biological evaluation, and analytical characterization using machine learning-based validation. Eur. J. Chem. 2023, 14(1), 155-164. doi:10.5155/eurjchem.14.1.155-164.2396
Arshad, M., Rashid, A., Mahmood, F., Saeed, S., & Ahmed, A. (2023). Metal(II) triazole complexes: Synthesis, biological evaluation, and analytical characterization using machine learning-based validation. European Journal of Chemistry, 14(1), 155-164. doi:10.5155/eurjchem.14.1.155-164.2396
Arshad, Muhammad, Aqsa Rashid, Faisal Mahmood, Salaha Saeed, & Anam Suhail Ahmed. "Metal(II) triazole complexes: Synthesis, biological evaluation, and analytical characterization using machine learning-based validation." European Journal of Chemistry [Online], 14.1 (2023): 155-164. Web. 26 Sep. 2023
Arshad, Muhammad, Rashid, Aqsa, Mahmood, Faisal, Saeed, Salaha, AND Ahmed, Anam. "Metal(II) triazole complexes: Synthesis, biological evaluation, and analytical characterization using machine learning-based validation" European Journal of Chemistry [Online], Volume 14 Number 1 (31 March 2023)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley

European Journal of Chemistry 2023, 14(1), 155-164 | doi: | Get rights and content


  • There are currently no refbacks.

Copyright (c) 2023 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.