European Journal of Chemistry 2023, 14(2), 193-201 | doi: | Get rights and content

Issue cover



Exploring DNA-interaction and molecular structure of ruthenium/1,2-bis-(diphenylphosphino)ethane)-based complex

Victor Cardoso Campideli (1) orcid , Jerica Margely Montilla-Suárez (2) orcid , Tiago Almeida Silva (3) orcid , Dalila Chaves Sicupira (4) orcid , Katia Mara Oliveira (5) orcid , Rodrigo Souza Correa (6,*) orcid

(1) Departamento de Química, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, 35400-000, Brazil
(2) Departamento de Química, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, 35400-000, Brazil
(3) Departamento de Química, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil
(4) Departamento de Química, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, 35400-000, Brazil
(5) Instituto de Química, Universidade de Brasília (UnB), Brasília, DF, 70910-900, Brazil
(6) Departamento de Química, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, 35400-000, Brazil
(*) Corresponding Author

Received: 24 Dec 2022 | Revised: 29 Jan 2023 | Accepted: 11 Feb 2023 | Published: 30 Jun 2023 | Issue Date: June 2023


The mixture of cis and trans-[RuCl2(dppe)2] (dppe: 1,2-bis-(diphenylphosphino)ethane) was prepared and the interaction with CT-DNA was evaluated by several methods, including UV-vis DNA spectroscopic titration, viscosity, and electrochemical studies. Investigation suggests that [RuCl2(dppe)2] interacts moderately with CT-DNA. Interestingly, the cis- and trans-isomers interact differently with DNA, as proved by the square-wave voltammetry studies. Finally, the crystal structure of trans-[RuCl2(dppe)2]Cl was obtained from an electrochemical solution and studied in detail, which presents a distorted octahedral geometry and interatomic parameters different from those found in the trans-[RuCl2(dppe)2] complex. Crystal data for C52H48Cl4P4Ru: triclinic, space group P-1 (no. 2), a = 9.240(3) Å, b = 10.9290(18) Å, c = 11.993(3) Å, α = 78.707(11)°, β = 86.712(13)°, γ = 82.598(13)°, = 1177.1(5) Å3, Z = 1, T = 293(2) K, μ(MoKα) = 0.732 mm-1, Dcalc = 1.467 g/cm3, 8434 reflections measured (6.934° ≤ 2Θ ≤ 51.986°), 4607 unique (Rint = 0.0973, Rsigma = 0.1171) which were used in all calculations. The final R1 was 0.0537 (I > 2σ(I)) and wR2 was 0.1347 (all data).


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).

European Journal of Chemistry


Viscosity; DNA interaction; Crystal structure; Ru/dppe complex; UV-Vis spectroscopy; Square-wave voltammetry

Full Text:

PDF    Open Access

DOI: 10.5155/eurjchem.14.2.193-201.2402

Links for Article

| | | | | | |

| | | | | | |

| | | |

Related Articles

Article Metrics

icon graph This Abstract was viewed 141 times | icon graph PDF Article downloaded 33 times

Funding information

Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG APQ-01674-18) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 311302/2020-3).


[1]. Cross, D.; Burmester, J. K. Gene therapy for cancer treatment: past, present and future. Clin. Med. Res. 2006, 4, 218-227.

[2]. Kumar, L. S.; Prasad, K. S.; Revanasiddappa, H. D. Synthesis, characterization, antioxidant, antimicrobial, DNA binding and cleavage studies of mononuclear Cu(II) and Co(II) complexes of 3-hydroxy-N'-(2-hydroxybenzylidene)-2-naphthohydrazide. Eur. J. Chem. 2011, 2, 394-403.

[3]. Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 1965, 205, 698-699.

[4]. Clarke, M. J.; Zhu, F.; Frasca, D. R. Non-platinum chemotherapeutic metallopharmaceuticals. Chem. Rev. 1999, 99, 2511-2534.

[5]. Mukhtar, S. D.; Suhail, M. Chiral metallic anticancer drugs: A brief-review. Eur. J. Chem. 2022, 13, 483-490.

[6]. Palchaudhuri, R.; Hergenrother, P. J. DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol. 2007, 18, 497-503.

[7]. Reedijk, J.; Lohman, P. H. Cisplatin: synthesis, antitumour activity and mechanism of action. Pharm. Weekbl. Sci. 1985, 7, 173-180.

[8]. Rehman, S. U.; Sarwar, T.; Husain, M. A.; Ishqi, H. M.; Tabish, M. Studying non-covalent drug-DNA interactions. Arch. Biochem. Biophys. 2015, 576, 49-60.

[9]. El-Shekeil, A. G.; Abubakr, A. O.; Al-Aghbari, S. A.; Nassar, M. Y. Anticancer 4: Anticancer and DNA cleavage studies of some new Schiff base titanium (IV) complexes. Eur. J. Chem. 2014, 5, 410-414.

[10]. Geierstanger, B. H.; Wemmer, D. E. Complexes of the minor groove of DNA. Annu. Rev. Biophys. Biomol. Struct. 1995, 24, 463-493.

[11]. Rupar, J.; Dobričić, V.; Brborić, J.; Čudina, O.; Aleksić, M. M. Square wave voltammetric study of interaction between 9-acridinyl amino acid derivatives and DNA. Bioelectrochemistry 2023, 149, 108323.

[12]. Searle, M. S. NMR studies of drug-DNA interactions. Prog. Nucl. Magn. Reson. Spectrosc. 1993, 25, 403-480.

[13]. Sirajuddin, M.; Ali, S.; Badshah, A. Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B 2013, 124, 1-19.

[14]. Gonçalves, G. R.; de Carvalho, A. B.; Honorato, J.; Oliveira, K. M.; Correa, R. S. A new polymorph of six-coordinated bis(5,5′-dimethyl-2,2′-bipyridine) nitratocopper(II) nitrate and its DNA interactions. J. Mol. Struct. 2021, 1224, 129035.

[15]. Oliveira, K. M.; Honorato, J.; Gonçalves, G. R.; Cominetti, M. R.; Batista, A. A.; Correa, R. S. Ru(II)/diclofenac-based complexes: DNA, BSA interaction and their anticancer evaluation against lung and breast tumor cells. Dalton Trans. 2020, 49, 12643-12652.

[16]. Hartinger, C. G.; Timerbaev, A. R.; Keppler, B. K. Capillary electrophoresis in anti-cancer metallodrug research: advances and future challenges. Electrophoresis 2003, 24, 2023-2037.

[17]. Barolli, J.; Corrêa, R.; Miranda, F.; Ribeiro, J.; Bloch, C., Jr; Ellena, J.; Moreno, V.; Cominetti, M.; Batista, A. Polypyridyl ruthenium complexes: Novel DNA-intercalating agents against human breast tumor. J. Braz. Chem. Soc. 2017, 28, 1879-1889.

[18]. Oliveira, K. M.; Honorato, J.; Demidoff, F. C.; Schultz, M. S.; Netto, C. D.; Cominetti, M. R.; Correa, R. S.; Batista, A. A. Lapachol in the design of a new ruthenium(II)-diphosphine complex as a promising anticancer metallodrug. J. Inorg. Biochem. 2021, 214, 111289.

[19]. Oliveira, K. M.; Peterson, E. J.; Carroccia, M. C.; Cominetti, M. R.; Deflon, V. M.; Farrell, N. P.; Batista, A. A.; Correa, R. S. Ru(II)-Naphthoquinone complexes with high selectivity for triple-negative breast cancer. Dalton Trans. 2020, 49, 16193-16203.

[20]. Carvalho, D. E. L.; Oliveira, K. M.; Bomfim, L. M.; Soares, M. B. P.; Bezerra, D. P.; Batista, A. A.; Correa, R. S. Nucleobase derivatives as building blocks to form Ru(II)-based complexes with high cytotoxicity. ACS Omega 2020, 5, 122-130.

[21]. Graminha, A. E.; Popolin, C.; Honorato de Araujo-Neto, J.; Correa, R. S.; de Oliveira, K. M.; Godoy, L. R.; Vegas, L. C.; Ellena, J.; Batista, A. A.; Cominetti, M. R. New ruthenium complexes containing salicylic acid and derivatives induce triple-negative tumor cell death via the intrinsic apoptotic pathway. Eur. J. Med. Chem. 2022, 243, 114772.

[22]. da Silva, M. M.; Ribeiro, G. H.; de Camargo, M. S.; Ferreira, A. G.; Ribeiro, L.; Barbosa, M. I. F.; Deflon, V. M.; Castelli, S.; Desideri, A.; Corrêa, R. S.; Ribeiro, A. B.; Nicolella, H. D.; Ozelin, S. D.; Tavares, D. C.; Batista, A. A. Ruthenium(II) diphosphine complexes with mercapto ligands that inhibit topoisomerase IB and suppress tumor growth in vivo. Inorg. Chem. 2021, 60, 14174-14189.

[23]. Bautista, M. T.; Cappellani, E. P.; Drouin, S. D.; Morris, R. H.; Schweitzer, C. T.; Sella, A.; Zubkowski, J. Preparation and spectroscopic properties of the .eta.2-dihydrogen complexes [MH(.eta.2-H2)PR2CH2CH2 PR2)2] + (M = iron, ruthenium; R = Ph, Et) and trends in properties down the iron group triad. J. Am. Chem. Soc. 1991, 113, 4876-4887.

[24]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.

[25]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0- new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466-470.

[26]. Seda, S. H.; Abdel Aziz, A. A. Synthesis, spectral characterization, antimicrobial, DNA binding and antioxidant studies of Co(II), Ni(II), Cu(II) and Zn(II) metal complexes of novel thiosalen analog N2S2. Eur. J. Chem. 2015, 6, 189-198.

[27]. Vedanayaki, S.; Jayaseelan, P. Synthesis, structural characterization and biological properties of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) complexes of tetradentate Schiff bases. Eur. J. Chem. 2016, 7, 368-374.

[28]. Correa, R. S.; Freire, V.; Barbosa, M. I. F.; Bezerra, D. P.; Bomfim, L. M.; Moreira, D. R. M.; Soares, M. B. P.; Ellena, J.; Batista, A. A. Ru(ii)-thyminate complexes: new metallodrug candidates against tumor cells. New J. Chem. 2018, 42, 6794-6802.

[29]. Shi, J.-H.; Chen, J.; Wang, J.; Zhu, Y.-Y. Binding interaction between sorafenib and calf thymus DNA: spectroscopic methodology, viscosity measurement and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136 Pt B, 443-450.

[30]. Tse, W. C.; Boger, D. L. A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. Acc. Chem. Res. 2004, 37, 61-69.

[31]. Sullivan, B. P.; Meyer, T. J. Comparisons of the physical and chemical properties of isomeric pairs. 2. Photochemical, thermal and electrochemical cis-trans isomerizations of M(Ph2PCH2PPh2)2Cl2 (M = RuII, OsII). Inorg. Chem. 1982, 21, 1037-1040.

[32]. Lu, X.; Zhu, K.; Zhang, M.; Liu, H.; Kang, J. Voltammetric studies of the interaction of transition-metal complexes with DNA. J. Biochem. Biophys. Methods 2002, 52, 189-200.

[33]. Barbosa, M. I. F.; Corrêa, R. S.; de Oliveira, K. M.; Rodrigues, C.; Ellena, J.; Nascimento, O. R.; Rocha, V. P. C.; Nonato, F. R.; Macedo, T. S.; Barbosa-Filho, J. M.; Soares, M. B. P.; Batista, A. A. Antiparasitic activities of novel ruthenium/lapachol complexes. J. Inorg. Biochem. 2014, 136, 33-39.

[34]. Dinelli, L. R.; Batista, A. A.; Wohnrath, K.; de Araujo, M. P.; Queiroz, S. L.; Bonfadini, M. R.; Oliva, G.; Nascimento, O. R.; Cyr, P. W.; MacFarlane, K. S.; James, B. R. Synthesis and characterization of [RuCl3(P-P)(H2O)] complexes; P-P = achiral or chiral, chelating ditertiary phosphine ligands. Inorg. Chem. 1999, 38, 5341-5345.

[35]. Polam, J. R.; Porter, L. C. Ru(II) Complexes containing chelating phosphine ligands. Synthesis, characterization, and X-ray crystal structures of dichlorobis(1,2-bis(diphenylphosphino)ethane)Ru(II) and the coordinatively unsaturated trigonal-bipyramidal cation, chlorobis-(1,2-bis(diphenylphosphino)ethane)Ru(II). J. Coord. Chem. 1993, 29, 109-119.

[36]. Lobana, T. S.; Singh, R.; Tiekink, E. R. T. The crystal and molecular structure of bis[1,2-bis(diphenylphosphino)ethane] dichloro ruthenium(II). J. Coord. Chem. 1990, 21, 225-229.

[37]. Chang, C.-W.; Ting, P.-C.; Lin, Y.-C.; Lee, G.-H.; Wang, Y. Synthesis of ruthenium vinylidene complexes with dppe ligand and their cyclopropenation reaction. J. Organomet. Chem. 1998, 553, 417-425.

[38]. Foi, A.; Corrêa, R. S.; Ellena, J.; Doctorovich, F.; Di Salvo, F. Halogen⋯halogen contacts for the stabilization of a new polymorph of 9,10-dichloroanthracene. J. Mol. Struct. 2014, 1059, 1-7.

Supporting information

The Supplementary Material for this article can be found online at: Supplementary files

How to cite

Campideli, V.; Montilla-Suárez, J.; Silva, T.; Sicupira, D.; Oliveira, K.; Correa, R. Eur. J. Chem. 2023, 14(2), 193-201. doi:10.5155/eurjchem.14.2.193-201.2402
Campideli, V.; Montilla-Suárez, J.; Silva, T.; Sicupira, D.; Oliveira, K.; Correa, R. Exploring DNA-interaction and molecular structure of ruthenium/1,2-bis-(diphenylphosphino)ethane)-based complex. Eur. J. Chem. 2023, 14(2), 193-201. doi:10.5155/eurjchem.14.2.193-201.2402
Campideli, V., Montilla-Suárez, J., Silva, T., Sicupira, D., Oliveira, K., & Correa, R. (2023). Exploring DNA-interaction and molecular structure of ruthenium/1,2-bis-(diphenylphosphino)ethane)-based complex. European Journal of Chemistry, 14(2), 193-201. doi:10.5155/eurjchem.14.2.193-201.2402
Campideli, Victor, Jerica Margely Montilla-Suárez, Tiago Almeida Silva, Dalila Chaves Sicupira, Katia Mara Oliveira, & Rodrigo Souza Correa. "Exploring DNA-interaction and molecular structure of ruthenium/1,2-bis-(diphenylphosphino)ethane)-based complex." European Journal of Chemistry [Online], 14.2 (2023): 193-201. Web. 3 Oct. 2023
Campideli, Victor, Montilla-Suárez, Jerica, Silva, Tiago, Sicupira, Dalila, Oliveira, Katia, AND Correa, Rodrigo. "Exploring DNA-interaction and molecular structure of ruthenium/1,2-bis-(diphenylphosphino)ethane)-based complex" European Journal of Chemistry [Online], Volume 14 Number 2 (30 June 2023)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley

European Journal of Chemistry 2023, 14(2), 193-201 | doi: | Get rights and content


  • There are currently no refbacks.

Copyright (c) 2023 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.