European Journal of Chemistry

Exploring DNA-interaction and molecular structure of ruthenium/1,2-bis-(diphenylphosphino)ethane)-based complex

Crossmark


Main Article Content

Victor Cardoso Campideli
Jerica Margely Montilla-Suárez
Tiago Almeida Silva
Dalila Chaves Sicupira
Katia Mara Oliveira
Rodrigo Souza Correa

Abstract

The mixture of cis and trans-[RuCl2(dppe)2] (dppe: 1,2-bis-(diphenylphosphino)ethane) was prepared and the interaction with CT-DNA was evaluated by several methods, including UV-vis DNA spectroscopic titration, viscosity, and electrochemical studies. Investigation suggests that [RuCl2(dppe)2] interacts moderately with CT-DNA. Interestingly, the cis- and trans-isomers interact differently with DNA, as proved by the square-wave voltammetry studies. Finally, the crystal structure of trans-[RuCl2(dppe)2]Cl was obtained from an electrochemical solution and studied in detail, which presents a distorted octahedral geometry and interatomic parameters different from those found in the trans-[RuCl2(dppe)2] complex. Crystal data for C52H48Cl4P4Ru: triclinic, space group P-1 (no. 2), a = 9.240(3) Å, b = 10.9290(18) Å, c = 11.993(3) Å, α = 78.707(11)°, β = 86.712(13)°, γ = 82.598(13)°, = 1177.1(5) Å3, Z = 1, T = 293(2) K, μ(MoKα) = 0.732 mm-1, Dcalc = 1.467 g/cm3, 8434 reflections measured (6.934° ≤ 2Θ ≤ 51.986°), 4607 unique (Rint = 0.0973, Rsigma = 0.1171) which were used in all calculations. The final R1 was 0.0537 (I > 2σ(I)) and wR2 was 0.1347 (all data).


icon graph This Abstract was viewed 323 times | icon graph Article PDF downloaded 147 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Campideli, V. C.; Montilla-Suárez, J. M.; Silva, T. A.; Sicupira, D. C.; Oliveira, K. M.; Correa, R. S. Exploring DNA-Interaction and Molecular Structure of Ruthenium 1,2-Bis-(diphenylphosphino)ethane)-Based Complex. Eur. J. Chem. 2023, 14, 193-201.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Cross, D.; Burmester, J. K. Gene therapy for cancer treatment: past, present and future. Clin. Med. Res. 2006, 4, 218-227.
https://doi.org/10.3121/cmr.4.3.218

[2]. Kumar, L. S.; Prasad, K. S.; Revanasiddappa, H. D. Synthesis, characterization, antioxidant, antimicrobial, DNA binding and cleavage studies of mononuclear Cu(II) and Co(II) complexes of 3-hydroxy-N'-(2-hydroxybenzylidene)-2-naphthohydrazide. Eur. J. Chem. 2011, 2, 394-403.
https://doi.org/10.5155/eurjchem.2.3.394-403.232

[3]. Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 1965, 205, 698-699.
https://doi.org/10.1038/205698a0

[4]. Clarke, M. J.; Zhu, F.; Frasca, D. R. Non-platinum chemotherapeutic metallopharmaceuticals. Chem. Rev. 1999, 99, 2511-2534.
https://doi.org/10.1021/cr9804238

[5]. Mukhtar, S. D.; Suhail, M. Chiral metallic anticancer drugs: A brief-review. Eur. J. Chem. 2022, 13, 483-490.
https://doi.org/10.5155/eurjchem.13.4.483-490.2312

[6]. Palchaudhuri, R.; Hergenrother, P. J. DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol. 2007, 18, 497-503.
https://doi.org/10.1016/j.copbio.2007.09.006

[7]. Reedijk, J.; Lohman, P. H. Cisplatin: synthesis, antitumour activity and mechanism of action. Pharm. Weekbl. Sci. 1985, 7, 173-180.
https://doi.org/10.1007/BF02307573

[8]. Rehman, S. U.; Sarwar, T.; Husain, M. A.; Ishqi, H. M.; Tabish, M. Studying non-covalent drug-DNA interactions. Arch. Biochem. Biophys. 2015, 576, 49-60.
https://doi.org/10.1016/j.abb.2015.03.024

[9]. El-Shekeil, A. G.; Abubakr, A. O.; Al-Aghbari, S. A.; Nassar, M. Y. Anticancer 4: Anticancer and DNA cleavage studies of some new Schiff base titanium (IV) complexes. Eur. J. Chem. 2014, 5, 410-414.
https://doi.org/10.5155/eurjchem.5.3.410-414.996

[10]. Geierstanger, B. H.; Wemmer, D. E. Complexes of the minor groove of DNA. Annu. Rev. Biophys. Biomol. Struct. 1995, 24, 463-493.
https://doi.org/10.1146/annurev.bb.24.060195.002335

[11]. Rupar, J.; Dobričić, V.; Brborić, J.; Čudina, O.; Aleksić, M. M. Square wave voltammetric study of interaction between 9-acridinyl amino acid derivatives and DNA. Bioelectrochemistry 2023, 149, 108323.
https://doi.org/10.1016/j.bioelechem.2022.108323

[12]. Searle, M. S. NMR studies of drug-DNA interactions. Prog. Nucl. Magn. Reson. Spectrosc. 1993, 25, 403-480.
https://doi.org/10.1016/0079-6565(93)80005-E

[13]. Sirajuddin, M.; Ali, S.; Badshah, A. Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B 2013, 124, 1-19.
https://doi.org/10.1016/j.jphotobiol.2013.03.013

[14]. Gonçalves, G. R.; de Carvalho, A. B.; Honorato, J.; Oliveira, K. M.; Correa, R. S. A new polymorph of six-coordinated bis(5,5′-dimethyl-2,2′-bipyridine) nitratocopper(II) nitrate and its DNA interactions. J. Mol. Struct. 2021, 1224, 129035.
https://doi.org/10.1016/j.molstruc.2020.129035

[15]. Oliveira, K. M.; Honorato, J.; Gonçalves, G. R.; Cominetti, M. R.; Batista, A. A.; Correa, R. S. Ru(II)/diclofenac-based complexes: DNA, BSA interaction and their anticancer evaluation against lung and breast tumor cells. Dalton Trans. 2020, 49, 12643-12652.
https://doi.org/10.1039/D0DT01591A

[16]. Hartinger, C. G.; Timerbaev, A. R.; Keppler, B. K. Capillary electrophoresis in anti-cancer metallodrug research: advances and future challenges. Electrophoresis 2003, 24, 2023-2037.
https://doi.org/10.1002/elps.200305452

[17]. Barolli, J.; Corrêa, R.; Miranda, F.; Ribeiro, J.; Bloch, C., Jr; Ellena, J.; Moreno, V.; Cominetti, M.; Batista, A. Polypyridyl ruthenium complexes: Novel DNA-intercalating agents against human breast tumor. J. Braz. Chem. Soc. 2017, 28, 1879-1889.
https://doi.org/10.21577/0103-5053.20170019

[18]. Oliveira, K. M.; Honorato, J.; Demidoff, F. C.; Schultz, M. S.; Netto, C. D.; Cominetti, M. R.; Correa, R. S.; Batista, A. A. Lapachol in the design of a new ruthenium(II)-diphosphine complex as a promising anticancer metallodrug. J. Inorg. Biochem. 2021, 214, 111289.
https://doi.org/10.1016/j.jinorgbio.2020.111289

[19]. Oliveira, K. M.; Peterson, E. J.; Carroccia, M. C.; Cominetti, M. R.; Deflon, V. M.; Farrell, N. P.; Batista, A. A.; Correa, R. S. Ru(II)-Naphthoquinone complexes with high selectivity for triple-negative breast cancer. Dalton Trans. 2020, 49, 16193-16203.
https://doi.org/10.1039/D0DT01091J

[20]. Carvalho, D. E. L.; Oliveira, K. M.; Bomfim, L. M.; Soares, M. B. P.; Bezerra, D. P.; Batista, A. A.; Correa, R. S. Nucleobase derivatives as building blocks to form Ru(II)-based complexes with high cytotoxicity. ACS Omega 2020, 5, 122-130.
https://doi.org/10.1021/acsomega.9b01921

[21]. Graminha, A. E.; Popolin, C.; Honorato de Araujo-Neto, J.; Correa, R. S.; de Oliveira, K. M.; Godoy, L. R.; Vegas, L. C.; Ellena, J.; Batista, A. A.; Cominetti, M. R. New ruthenium complexes containing salicylic acid and derivatives induce triple-negative tumor cell death via the intrinsic apoptotic pathway. Eur. J. Med. Chem. 2022, 243, 114772.
https://doi.org/10.1016/j.ejmech.2022.114772

[22]. da Silva, M. M.; Ribeiro, G. H.; de Camargo, M. S.; Ferreira, A. G.; Ribeiro, L.; Barbosa, M. I. F.; Deflon, V. M.; Castelli, S.; Desideri, A.; Corrêa, R. S.; Ribeiro, A. B.; Nicolella, H. D.; Ozelin, S. D.; Tavares, D. C.; Batista, A. A. Ruthenium(II) diphosphine complexes with mercapto ligands that inhibit topoisomerase IB and suppress tumor growth in vivo. Inorg. Chem. 2021, 60, 14174-14189.
https://doi.org/10.1021/acs.inorgchem.1c01539

[23]. Bautista, M. T.; Cappellani, E. P.; Drouin, S. D.; Morris, R. H.; Schweitzer, C. T.; Sella, A.; Zubkowski, J. Preparation and spectroscopic properties of the .eta.2-dihydrogen complexes [MH(.eta.2-H2)PR2CH2CH2 PR2)2] + (M = iron, ruthenium; R = Ph, Et) and trends in properties down the iron group triad. J. Am. Chem. Soc. 1991, 113, 4876-4887.
https://doi.org/10.1021/ja00013a025

[24]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[25]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0- new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[26]. Seda, S. H.; Abdel Aziz, A. A. Synthesis, spectral characterization, antimicrobial, DNA binding and antioxidant studies of Co(II), Ni(II), Cu(II) and Zn(II) metal complexes of novel thiosalen analog N2S2. Eur. J. Chem. 2015, 6, 189-198.
https://doi.org/10.5155/eurjchem.6.2.189-198.1244

[27]. Vedanayaki, S.; Jayaseelan, P. Synthesis, structural characterization and biological properties of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) complexes of tetradentate Schiff bases. Eur. J. Chem. 2016, 7, 368-374.
https://doi.org/10.5155/eurjchem.7.3.368-374.1443

[28]. Correa, R. S.; Freire, V.; Barbosa, M. I. F.; Bezerra, D. P.; Bomfim, L. M.; Moreira, D. R. M.; Soares, M. B. P.; Ellena, J.; Batista, A. A. Ru(ii)-thyminate complexes: new metallodrug candidates against tumor cells. New J. Chem. 2018, 42, 6794-6802.
https://doi.org/10.1039/C7NJ04368F

[29]. Shi, J.-H.; Chen, J.; Wang, J.; Zhu, Y.-Y. Binding interaction between sorafenib and calf thymus DNA: spectroscopic methodology, viscosity measurement and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136 Pt B, 443-450.
https://doi.org/10.1016/j.saa.2014.09.056

[30]. Tse, W. C.; Boger, D. L. A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. Acc. Chem. Res. 2004, 37, 61-69.
https://doi.org/10.1021/ar030113y

[31]. Sullivan, B. P.; Meyer, T. J. Comparisons of the physical and chemical properties of isomeric pairs. 2. Photochemical, thermal and electrochemical cis-trans isomerizations of M(Ph2PCH2PPh2)2Cl2 (M = RuII, OsII). Inorg. Chem. 1982, 21, 1037-1040.
https://doi.org/10.1021/ic00133a033

[32]. Lu, X.; Zhu, K.; Zhang, M.; Liu, H.; Kang, J. Voltammetric studies of the interaction of transition-metal complexes with DNA. J. Biochem. Biophys. Methods 2002, 52, 189-200.
https://doi.org/10.1016/S0165-022X(02)00074-X

[33]. Barbosa, M. I. F.; Corrêa, R. S.; de Oliveira, K. M.; Rodrigues, C.; Ellena, J.; Nascimento, O. R.; Rocha, V. P. C.; Nonato, F. R.; Macedo, T. S.; Barbosa-Filho, J. M.; Soares, M. B. P.; Batista, A. A. Antiparasitic activities of novel ruthenium/lapachol complexes. J. Inorg. Biochem. 2014, 136, 33-39.
https://doi.org/10.1016/j.jinorgbio.2014.03.009

[34]. Dinelli, L. R.; Batista, A. A.; Wohnrath, K.; de Araujo, M. P.; Queiroz, S. L.; Bonfadini, M. R.; Oliva, G.; Nascimento, O. R.; Cyr, P. W.; MacFarlane, K. S.; James, B. R. Synthesis and characterization of [RuCl3(P-P)(H2O)] complexes; P-P = achiral or chiral, chelating ditertiary phosphine ligands. Inorg. Chem. 1999, 38, 5341-5345.
https://doi.org/10.1021/ic990130c

[35]. Polam, J. R.; Porter, L. C. Ru(II) Complexes containing chelating phosphine ligands. Synthesis, characterization, and X-ray crystal structures of dichlorobis(1,2-bis(diphenylphosphino)ethane)Ru(II) and the coordinatively unsaturated trigonal-bipyramidal cation, chlorobis-(1,2-bis(diphenylphosphino)ethane)Ru(II). J. Coord. Chem. 1993, 29, 109-119.
https://doi.org/10.1080/00958979308037130

[36]. Lobana, T. S.; Singh, R.; Tiekink, E. R. T. The crystal and molecular structure of bis[1,2-bis(diphenylphosphino)ethane] dichloro ruthenium(II). J. Coord. Chem. 1990, 21, 225-229.
https://doi.org/10.1080/00958979009409719

[37]. Chang, C.-W.; Ting, P.-C.; Lin, Y.-C.; Lee, G.-H.; Wang, Y. Synthesis of ruthenium vinylidene complexes with dppe ligand and their cyclopropenation reaction. J. Organomet. Chem. 1998, 553, 417-425.
https://doi.org/10.1016/S0022-328X(97)00629-3

[38]. Foi, A.; Corrêa, R. S.; Ellena, J.; Doctorovich, F.; Di Salvo, F. Halogen⋯halogen contacts for the stabilization of a new polymorph of 9,10-dichloroanthracene. J. Mol. Struct. 2014, 1059, 1-7.
https://doi.org/10.1016/j.molstruc.2013.11.028

Supporting Agencies

Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG APQ-01674-18) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 311302/2020-3).
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).