European Journal of Chemistry

Magnetically recoverable nanocatalyst for the synthesis of pyranopyrazoles: CoFe2O4@SiO2-HClO4

Crossmark


Main Article Content

Nikita Vinod Thakare
Anand Shankar Aswar
Nilesh Govindrao Salunkhe

Abstract

The multiheterocyclic ring system shows valuable pharmaceutical and biological activities. In the present study, a microwave-assisted three-component reaction between aryl aldehyde, malononitrile, and 5-methyl-2,4-dihydro-3H-pyrazole-3-one led to the synthesis of pyrano[2,3-c]pyrazoles has been described. The reaction was carried out under solvent-free conditions in the presence of a new magnetically recoverable nanocatalyst (CoFe2O4@SiO2-HClO4). The reported protocol offers several advantages such as being environmentally benign, being rapid, inexpensive, having high atom and step economy, and being facile. The simple method of catalyst preparation, easy magnetic recovery, and reusability of the catalyst for four runs are notable features of the nanocatalyst. Antibacterial activity of all synthesized compounds was tested against Escherichia coli and Staphylococcus aureus. All synthesized compounds showed promising biological activity and may be used as a potential antibacterial candidate in biological science.


icon graph This Abstract was viewed 452 times | icon graph Article PDF downloaded 246 times

How to Cite
(1)
Thakare, N. V.; Aswar, A. S.; Salunkhe, N. G. Magnetically Recoverable Nanocatalyst for the Synthesis of Pyranopyrazoles: CoFe2O4@SiO2-HClO4. Eur. J. Chem. 2023, 14, 385-392.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Sadeghian, Z.; Bayat, M.; Safari, F. Synthesis and in vitro anticancer activity evaluation of spiro[indolo[2,1-b]quinazoline-pyrano[2,3-c]pyrazole] via sequential four-component reaction. J. Mol. Struct. 2022, 1250, 131759.
https://doi.org/10.1016/j.molstruc.2021.131759

[2]. Reddy, G. M.; Garcia, J. R.; Zyryanov, G. V.; Sravya, G.; Reddy, N. B. Pyranopyrazoles as efficient antimicrobial agents: Green, one pot and multicomponent approach. Bioorg. Chem. 2019, 82, 324-331.
https://doi.org/10.1016/j.bioorg.2018.09.035

[3]. Faidallah, H. M.; Rostom, S. A. F. Synthesis, anti-inflammatory activity, and COX-1/2 inhibition profile of some novel non-acidic polysubstituted pyrazoles and pyrano[2,3-c ]pyrazoles: Anti-inflammatory pyrazoles and pyrano[2,3-c ]pyrazoles. Arch. Pharm. (Weinheim) 2017, 350, 1700025.
https://doi.org/10.1002/ardp.201700025

[4]. Abdelrazek, F. M.; Metz, P.; Metwally, N. H.; El-Mahrouky, S. F. Synthesis and molluscicidal activity of new cinnoline and pyrano [2,3-c]pyrazole derivatives. Arch. Pharm. (Weinheim) 2006, 339, 456-460.
https://doi.org/10.1002/ardp.200600057

[5]. Foloppe, N.; Fisher, L. M.; Howes, R.; Potter, A.; Robertson, A. G. S.; Surgenor, A. E. Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorg. Med. Chem. 2006, 14, 4792-4802.
https://doi.org/10.1016/j.bmc.2006.03.021

[6]. Kimata, A.; Nakagawa, H.; Ohyama, R.; Fukuuchi, T.; Ohta, S.; Suzuki, T.; Miyata, N. New series of antiprion compounds: Pyrazolone derivatives have the potent activity of inhibiting protease-resistant prion protein accumulation. J. Med. Chem. 2007, 50, 5053-5056.
https://doi.org/10.1021/jm070688r

[7]. Chougala, B. M.; Samundeeswari, S.; Holiyachi, M.; Shastri, L. A.; Dodamani, S.; Jalalpure, S.; Dixit, S. R.; Joshi, S. D.; Sunagar, V. A. Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem. 2017, 125, 101-116.
https://doi.org/10.1016/j.ejmech.2016.09.021

[8]. Abdelgaleil, S. A. M.; Badawy, Y. M. Herbicidal, insecticidal and structure-activity relationship studies on pyranopyrazole and oxinobispyrazole derivatives. Alex. Sci. Exch. J. Int. Q. J. Sci. Agric. Environ. 2016, 37, 572-580.
https://doi.org/10.21608/asejaiqjsae.2016.2531

[9]. Maggi, R.; Ballini, R.; Sartori, G.; Sartorio, R. Basic alumina catalysed synthesis of substituted 2-amino-2-chromenes via three-component reaction. Tetrahedron Lett. 2004, 45, 2297-2299.
https://doi.org/10.1016/j.tetlet.2004.01.115

[10]. Otto, H.-H. Darstellung einiger 4H-Pyrano[2.3-c]pyrazolderivate. Arch. Pharm. (Weinheim) 1974, 307, 444-447.
https://doi.org/10.1002/ardp.19743070609

[11]. Otto, H.-H.; Schmelz, H. Heterocyclen durch Michael-Reaktionen, 5. Mitt. Nucleophile Additionen an 4-Aryliden-pyrazolone. Arch. Pharm. (Weinheim) 1979, 312, 478-486.
https://doi.org/10.1002/ardp.19793120604

[12]. Ramtekkar, R.; Kumarvel, K.; Vasuki, G.; Sekar, K.; Krishna, R. Computer-aided drug design of pyranopyrazoles and related compounds for checkpoint kinase-1. Lett. Drug Des. Discov. 2009, 6, 579-584.
https://doi.org/10.2174/157018009789353455

[13]. Amiri, Z.; Bayat, M. A catalyst-free approach to synthesis of spiroacenaphthylene-pyranopyrazole derivatives in water media. Mol. Divers. 2021, 25, 121-129.
https://doi.org/10.1007/s11030-019-10030-z

[14]. Dehghani Tafti, A.; Mirjalili, B. B. F.; Bamoniri, A.; Salehi, N. Rapid four-component synthesis of dihydropyrano[2,3-c]pyrazoles using nano-eggshell/Ti(IV) as a highly compatible natural based catalyst. BMC Chem. 2021, 15, 6.
https://doi.org/10.1186/s13065-021-00734-5

[15]. Yavari, I.; Sheykhahmadi, J. TFA-mediated synthesis of functionalized pyrano[2,3-c]pyrazoles from pyrazol-3-ones, active carbonyl compounds and tert-BuOH. Mol. Divers. 2022, 26, 879-890.
https://doi.org/10.1007/s11030-021-10200-y

[16]. Litvinov, Y. M.; Shestopalov, A. A.; Rodinovskaya, L. A.; Shestopalov, A. M. New convenient four-component synthesis of 6-amino-2,4-dihydropyrano[2,3-c]pyrazol-5-carbonitriles and one-pot synthesis of 6'-aminospiro[(3H)-indol-3,4'-pyrano[2,3-c]pyrazol]-(1H)-2-on-5'-carbonitriles. J. Comb. Chem. 2009, 11, 914-919.
https://doi.org/10.1021/cc900076j

[17]. Li, W.; Ruzi, R.; Ablajan, K.; Ghalipt, Z. One-pot synthesis of highly functionalized pyrano[2,3-c]pyrazole-4,4′-diacetate and 6-oxo-pyrano[2,3-c]pyrazole derivatives catalyzed by urea. Tetrahedron 2017, 73, 164-171.
https://doi.org/10.1016/j.tet.2016.11.067

[18]. Kamble, R. D.; Dawane, B. S.; Yemul, O. S.; Kale, A. B.; Patil, S. D. Bleaching earth clay (pH 12.5): a green catalyst for rapid synthesis of pyranopyrazole derivatives via a tandem three-component reaction. Res. Chem. Intermed. 2013, 39, 3859-3866.
https://doi.org/10.1007/s11164-012-0887-0

[19]. Abdollahi-Alibeik, M.; Moaddeli, A.; Masoomi, K. BF3 bonded nano Fe3O4 (BF3/MNPs): an efficient magnetically recyclable catalyst for the synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives. RSC Adv. 2015, 5, 74932-74939.
https://doi.org/10.1039/C5RA11343A

[20]. Azarifar, D.; Abbasi, Y. Sulfonic acid-functionalized magnetic Fe3-xTixO4 nanoparticles: New recyclable heterogeneous catalyst for one-pot synthesis of tetrahydrobenzo[b]pyrans and dihydropyrano[2,3-c]pyrazole derivatives. Synth. Commun. 2016, 46, 745-758.
https://doi.org/10.1080/00397911.2016.1171360

[21]. Rather, R. A.; Siddiqui, Z. N. Synthesis, characterization and application of Nd-Salen schiff base complex Immobilized Mesoporous Silica in solvent free synthesis of pyranopyrazoles. J. Organomet. Chem. 2018, 868, 164-174.
https://doi.org/10.1016/j.jorganchem.2018.05.008

[22]. Sachdeva, H.; Saroj, R. ZnO nanoparticles as an efficient, heterogeneous, reusable, and ecofriendly catalyst for four-component one-pot green synthesis of pyranopyrazole derivatives in water. ScientificWorldJournal 2013, 2013, 1-8.
https://doi.org/10.1155/2013/680671

[23]. Sonar, J. P.; Pardeshi, S. D.; Dokhe, S. A.; Bhavar, G. M.; Tekale, S. U.; Zine, A. M.; Thore, S. N. One pot synthesis of pyranopyrazole using sodium lactate as an efficient catalyst. Eur. Chem. Bull. 2019, 8, 207-221.
https://doi.org/10.17628/ecb.2019.8.207-211

[24]. Agrwal, A.; Pathak, R. K.; Kasana, V. Molecular docking and antibacterial studies of pyranopyrazole derivatives synthesized using [pap-glu@chi] biocatalyst through a greener approach. Arab. J. Sci. Eng. 2022, 47, 347-363.
https://doi.org/10.1007/s13369-021-05377-1

[25]. Elinson, M. N.; Dorofeev, A. S.; Miloserdov, F. M.; Nikishin, G. I. Electrocatalytic multicomponent assembling of isatins, 3-methyl-2-pyrazolin-5-ones and malononitrile: facile and convenient way to functionalized spirocyclic [indole-3,4'-pyrano[2,3-c]pyrazole] system. Mol. Divers. 2009, 13, 47-52.
https://doi.org/10.1007/s11030-008-9100-1

[26]. Maddila, S.; Gorle, S.; Shabalala, S.; Oyetade, O.; Maddila, S. N.; Lavanya, P.; Jonnalagadda, S. B. Ultrasound mediated green synthesis of pyrano[2,3-c]pyrazoles by using Mn doped ZrO2. Arab. J. Chem. 2019, 12, 671-679.
https://doi.org/10.1016/j.arabjc.2016.04.016

[27]. Thakare, N. V.; Aswar, A. S.; Salunkhe, N. G. CoFe2O4@SiO2-HClO4 magnetic nanoparticles: synthesis and its application in catalysis. Emergent Mater. 2023, https://doi.org/10.1007/s42247-023-00502-2.
https://doi.org/10.1007/s42247-023-00502-2

[28]. Leung, Y. L. Staphylococcus aureus. In Encyclopedia of Toxicology; Elsevier, 2014; pp. 379-380.
https://doi.org/10.1016/B978-0-12-386454-3.00539-X

[29]. Pisano; Kumar; Medda; Gatto; Pal; Fais; Era; Cosentino; Uriarte; Santana; Pintus; Matos Antibacterial activity and molecular docking studies of a selected series of hydroxy-3-arylcoumarins. Molecules 2019, 24, 2815.
https://doi.org/10.3390/molecules24152815

[30]. Zolfigol, M. A.; Tavasoli, M.; Moosavi-Zare, A. R.; Moosavi, P.; Kruger, H. G.; Shiri, M.; Khakyzadeh, V. Synthesis of pyranopyrazoles using isonicotinic acid as a dual and biological organocatalyst. RSC Adv. 2013, 3, 25681.
https://doi.org/10.1039/c3ra45289a

[31]. Tayade, Y. A.; Dalal, D. S. β-Cyclodextrin as a Supramolecular Catalyst for the Synthesis of 1H-Pyrazolo[1,2-b]phthalazine-5,10-dione Derivatives in Water. Catal. Letters 2017, 147, 1411-1421.
https://doi.org/10.1007/s10562-017-2032-6

[32]. Badiger, K. B.; Giddaerappa; Hanumanthappa, R.; Sannegowda, L. K.; Kamanna, K. An Agro‐waste based Eco‐friendly synthesis, electrochemical behavior and anti‐oxidant properties evaluation of pyrano[2,3‐ c ]pyrazole and pyrazolyl‐4 H ‐chromenes derivatives. ChemistrySelect 2022, 7, e202104033.
https://doi.org/10.1002/slct.202104033

[33]. Mecadon, H.; Rohman, M. R.; Rajbangshi, M.; Myrboh, B. γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in aqueous medium. Tetrahedron Lett. 2011, 52, 2523-2525.
https://doi.org/10.1016/j.tetlet.2011.03.036

[34]. Zhou, C.-F.; Li, J.-J.; Su, W.-K. Morpholine triflate promoted one-pot, four-component synthesis of dihydropyrano[2,3-c]pyrazoles. Chin. Chem. Lett. 2016, 27, 1686-1690.
https://doi.org/10.1016/j.cclet.2016.05.010

[35]. Aliabadi, R. S.; Mahmoodi, N. O. Green and efficient synthesis of pyranopyrazoles using [bmim][OH−] as an ionic liquid catalyst in water under microwave irradiation and investigation of their antioxidant activity. RSC Adv. 2016, 6, 85877-85884.
https://doi.org/10.1039/C6RA17594E

[36]. Patel, K. G.; Misra, N. M.; Vekariya, R. H.; Shettigar, R. R. One-pot multicomponent synthesis in aqueous medium of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile and derivatives using a green and reusable nano-SiO2 catalyst from agricultural waste. Res. Chem. Intermed. 2018, 44, 289-304.
https://doi.org/10.1007/s11164-017-3104-3

[37]. Ebrahimi, J.; Mohammadi, A.; Pakjoo, V.; Bahramzade, E.; Habibi, A. Highly efficient solvent-free synthesis of pyranopyrazoles by a Brønsted-acidic ionic liquid as a green and reusable catalyst. J. Chem. Sci. (Bangalore) 2012, 124, 1013-1017.
https://doi.org/10.1007/s12039-012-0310-9

[38]. Chavan, H. V.; Babar, S. B.; Hoval, R. U.; Bandgar, B. P. Rapid one-pot, four component synthesis of pyranopyrazoles using heteropolyacid under solvent-free condition. Bull. Korean Chem. Soc. 2011, 32, 3963-3966.
https://doi.org/10.5012/bkcs.2011.32.11.3963

[39]. Khurana, J. M.; Chaudhary, A. Efficient and green synthesis of 4H-pyrans and 4H-pyrano[2,3-c] pyrazoles catalyzed by task-specific ionic liquid [bmim]OH under solvent-free conditions. Green Chem. Lett. Rev. 2012, 5, 633-638.
https://doi.org/10.1080/17518253.2012.691183

[40]. Saha, A.; Payra, S.; Banerjee, S. One-pot multicomponent synthesis of highly functionalized bio-active pyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives using ZrO2 nanoparticles as a reusable catalyst. Green Chem. 2015, 17, 2859-2866.
https://doi.org/10.1039/C4GC02420F

[41]. Wu, M.; Feng, Q.; Wan, D.; Ma, J. CTACl as catalyst for four-component, one-pot synthesis of pyranopyrazole derivatives in aqueous medium. Synth. Commun. 2013, 43, 1721-1726.
https://doi.org/10.1080/00397911.2012.666315

Supporting Agencies

Sant Gadge Baba Amravati University, Amravati, 444602, India.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).