European Journal of Chemistry

Design, synthesis, spectral analysis, and biological evaluation of Schiff bases with a 1,3,4-thiadiazole moiety as an effective inhibitor against bacterial and fungal strains

Crossmark


Main Article Content

Sajid Ajit Malak
Jamatsing Dabarsing Rajput
Mustakim Sharif

Abstract

Many distinct natural and pharmaceutical items include the well-known heterocyclic nucleus 1,3,4-thiadiazole. Ten Schiff bases of 1,3,4-thiadiazole derivatives have been synthesized using equimolar amounts of 5-styryl-1,3,4-thiadiazol-2-amine and substituted acetophenones in the catalytic amount of ethanol. The synthesized derivatives of Schiff's bases were characterized by FT-IR, 1H NMR, 13C NMR, and mass spectroscopy. The 1,3,4-thiadiazole Schiff’s bases (RM-1 to RM-10) were tested for their in vitro antimicrobial activity against Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus using the disc diffusion method. The 1,3,4-thiadiazole Schiff bases showed strong antibacterial activity against bacterial and fungal species, however, their activity was noticeably less effective than that of the evaluated conventional antibiotics.


icon graph This Abstract was viewed 633 times | icon graph Article PDF downloaded 366 times

How to Cite
(1)
Malak, S. A.; Rajput, J. D.; Sharif, M. Design, Synthesis, Spectral Analysis, and Biological Evaluation of Schiff Bases With a 1,3,4-Thiadiazole Moiety As an Effective Inhibitor Against Bacterial and Fungal Strains. Eur. J. Chem. 2023, 14, 466-472.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Sadawarte, G. P.; Halikar, N. K.; Kale, A. D.; Jagrut, V. B. Sodium oxalate mediate synthesis and α-amalyase inhibition assay of 5-substituted-3-phenyl-2-thioxoimidazolidin-4-ones. Polycycl. Aromat. Compd. 2023, 1-7.
https://doi.org/10.1080/10406638.2023.2177681

[2]. Sadawarte, G.; Jagatap, S.; Patil, M.; Jagrut, V.; Rajput, J. D. Synthesis of substituted pyridine based sulphonamides as an antidiabetic agent. Eur. J. Chem. 2021, 12, 279-283.
https://doi.org/10.5155/eurjchem.12.3.279-283.2118

[3]. Shamaila, S.; Zafar, N.; Riaz, S.; Sharif, R.; Nazir, J.; Naseem, S. Gold nanoparticles: An efficient antimicrobial agent against Enteric bacterial human pathogen. Nanomaterials (Basel) 2016, 6, 71.
https://doi.org/10.3390/nano6040071

[4]. Hu, Y.; Li, C.-Y.; Wang, X.-M.; Yang, Y.-H.; Zhu, H.-L. 1,3,4-thiadiazole: Synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem. Rev. 2014, 114, 5572-5610.
https://doi.org/10.1021/cr400131u

[5]. Ebrahimi, S. Synthesis of some pyridyl and cyclohexyl substituted 1,2,4 triazole, 1,3,4-thiadiazole and 1,3,4-oxadiazole derivatives. Eur. J. Chem. 2010, 1, 322-324.
https://doi.org/10.5155/eurjchem.1.4.322-324.65

[6]. Luo, Y.; Zhang, S.; Liu, Z.-J.; Chen, W.; Fu, J.; Zeng, Q.-F.; Zhu, H.-L. Synthesis and antimicrobical evaluation of a novel class of 1,3,4-thiadiazole: Derivatives bearing 1,2,4-triazolo[1,5-a]pyrimidine moiety. Eur. J. Med. Chem. 2013, 64, 54-61.
https://doi.org/10.1016/j.ejmech.2013.04.014

[7]. Farghaly, T. A.; Abdallah, M. A.; Muhammad, Z. A. Synthesis and evaluation of the anti-microbial activity of new heterocycles containing the 1,3,4-thiadiazole moiety. Molecules 2011, 16, 10420-10432.
https://doi.org/10.3390/molecules161210420

[8]. Talath, S.; Gadad, A. K. Synthesis, antibacterial and antitubercular activities of some 7-[4-(5-amino-[1,3,4]thiadiazole-2-sulfonyl)-piperazin-1-yl] fluoroquinolonic derivatives. Eur. J. Med. Chem. 2006, 41, 918-924.
https://doi.org/10.1016/j.ejmech.2006.03.027

[9]. Pintilie, O.; Profire, L.; Sunel, V.; Popa, M.; Pui, A. Synthesis and antimicrobial activity of some new 1,3,4-thiadiazole and 1,2,4-triazole compounds having a D,L-methionine moiety. Molecules 2007, 12, 103-113.
https://doi.org/10.3390/12010103

[10]. Foroumadi, A.; Emami, S.; Hassanzadeh, A.; Rajaee, M.; Sokhanvar, K.; Moshafi, M. H.; Shafiee, A. Synthesis and antibacterial activity of N-(5-benzylthio-1,3,4-thiadiazol-2-yl) and N-(5-benzylsulfonyl-1,3,4-thiadiazol-2-yl)piperazinyl quinolone derivatives. Bioorg. Med. Chem. Lett. 2005, 15, 4488-4492.
https://doi.org/10.1016/j.bmcl.2005.07.016

[11]. Hameed, S. A.; Varkey, J.; Jayasekhar, P. Schiff bases and Bicyclic derivatives comprising 1, 3, 4-thiadiazole moiety-A Review on their Pharmacological activities. Asian J. Pharm. Res. 2019, 9, 299-306.
https://doi.org/10.5958/2231-5691.2019.00047.9

[12]. Ibatte, S. N. Synthesis and characterization of new Schiff base derived from 2-amino-5-(substituted phenyl) thiadiazole, substituted aromatic aldehyde and acetyl acetone. Caribbean Journal of Science and Technology 2022, 10, 09-15.
https://doi.org/10.55434/CBI.2022.10102

[13]. Muğlu, H.; Şener, N.; Mohammad Emsaed, H. A.; Özkınalı, S.; Özkan, O. E.; Gür, M. Synthesis and characterization of 1,3,4-thiadiazole compounds derived from 4-phenoxybutyric acid for antimicrobial activities. J. Mol. Struct. 2018, 1174, 151-159.
https://doi.org/10.1016/j.molstruc.2018.03.116

[14]. Muğlu, H.; Yakan, H.; Shouaib, H. A. New 1,3,4-thiadiazoles based on thiophene-2-carboxylic acid: Synthesis, characterization, and antimicrobial activities. J. Mol. Struct. 2020, 1203, 127470.
https://doi.org/10.1016/j.molstruc.2019.127470

[15]. Jakovljević, K.; Matić, I. Z.; Stanojković, T.; Krivokuća, A.; Marković, V.; Joksović, M. D.; Mihailović, N.; Nićiforović, M.; Joksović, L. Synthesis, antioxidant and antiproliferative activities of 1,3,4-thiadiazoles derived from phenolic acids. Bioorg. Med. Chem. Lett. 2017, 27, 3709-3715.
https://doi.org/10.1016/j.bmcl.2017.07.003

[16]. Zhang, J.; Wang, X.; Yang, J.; Guo, L.; Wang, X.; Song, B.; Dong, W.; Wang, W. Novel diosgenin derivatives containing 1,3,4-oxadiazole/ thiadiazole moieties as potential antitumor agents: Design, synthesis and cytotoxic evaluation. Eur. J. Med. Chem. 2020, 186, 111897.
https://doi.org/10.1016/j.ejmech.2019.111897

[17]. Quintana, C.; Klahn, A. H.; Artigas, V.; Fuentealba, M.; Biot, C.; Halloum, I.; Kremer, L.; Arancibia, R. Cyrhetrenyl and ferrocenyl 1,3,4-thiadiazole derivatives: Synthesis, characterization, crystal structures and in vitro antitubercular activity. Inorg. Chem. Commun. 2015, 55, 48-50.
https://doi.org/10.1016/j.inoche.2015.03.008

[18]. Haider, S.; Alam, M. S.; Hamid, H.; Dhulap, A.; Kumar, D. Design, synthesis and biological evaluation of benzoxazolinone-containing 1,3,4-thiadiazoles as TNF-α inhibitors. Heliyon 2019, 5, e01503.
https://doi.org/10.1016/j.heliyon.2019.e01503

[19]. Luszczki, J. J.; Karpińska, M.; Matysiak, J.; Niewiadomy, A. Characterization and preliminary anticonvulsant assessment of some 1,3,4-thiadiazole derivatives. Pharmacol. Rep. 2015, 67, 588-592.
https://doi.org/10.1016/j.pharep.2014.12.008

[20]. Jakovljević, K.; Joksović, M. D.; Botta, B.; Jovanović, L. S.; Avdović, E.; Marković, Z.; Mihailović, V.; Andrić, M.; Trifunović, S.; Marković, V. Novel 1,3,4-thiadiazole conjugates derived from protocatechuic acid: Synthesis, antioxidant activity, and computational and electrochemical studies. C. R. Chim. 2019, 22, 585-598.
https://doi.org/10.1016/j.crci.2019.06.001

[21]. Sadat-Ebrahimi, S. E.; Mirmohammadi, M.; Mojallal Tabatabaei, Z.; Azimzadeh Arani, M.; Jafari-Ashtiani, S.; Hashemian, M.; Foroumadi, P.; Yahya-Meymandi, A.; Moghimi, S.; Moshafi, M. H.; Norouzi, P.; Kabudanian Ardestani, S.; Foroumadi, A. Novel 5-(nitrothiophene-2-yl)-1,3,4-Thiadiazole Derivatives: Synthesis and Antileishmanial Activity against promastigote stage of Leishmania major. Iran. J. Pharm. Res. 2019, 18, 1816-1822.

[22]. Chen, J.; Yi, C.; Wang, S.; Wu, S.; Li, S.; Hu, D.; Song, B. Novel amide derivatives containing 1,3,4-thiadiazole moiety: Design, synthesis, nematocidal and antibacterial activities. Bioorg. Med. Chem. Lett. 2019, 29, 1203-1210.
https://doi.org/10.1016/j.bmcl.2019.03.017

[23]. Er, M.; Özer, A.; Direkel, Ş.; Karakurt, T.; Tahtaci, H. Novel substituted benzothiazole and Imidazo[2,1-b][1,3,4]Thiadiazole derivatives: Synthesis, characterization, molecular docking study, and investigation of their in vitro antileishmanial and antibacterial activities. J. Mol. Struct. 2019, 1194, 284-296.
https://doi.org/10.1016/j.molstruc.2019.05.104

[24]. Fascio, M. L.; Sepúlveda, C. S.; Damonte, E. B.; D'Accorso, N. B. Synthesis and antiviral activity of some imidazo[1,2-b][1,3,4]thiadiazole carbohydrate derivatives. Carbohydr. Res. 2019, 480, 61-66.
https://doi.org/10.1016/j.carres.2019.05.003

[25]. Chawla, G.; Kumar, U.; Bawa, S.; Kumar, J. Syntheses and evaluation of anti-inflammatory, analgesic and ulcerogenic activities of 1,3,4-oxadiazole and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives. J. Enzyme Inhib. Med. Chem. 2012, 27, 658-665.
https://doi.org/10.3109/14756366.2011.606543

[26]. Kaur, H.; Kumar, S.; Vishwakarma, P.; Sharma, M.; Saxena, K. K.; Kumar, A. Synthesis and antipsychotic and anticonvulsant activity of some new substituted oxa/thiadiazolylazetidinonyl/ thiazolidinonyl carbazoles. Eur. J. Med. Chem. 2010, 45, 2777-2783.
https://doi.org/10.1016/j.ejmech.2010.02.060

[27]. Oruç, E. E.; Rollas, S.; Kandemirli, F.; Shvets, N.; Dimoglo, A. S. 1,3,4-thiadiazole derivatives. Synthesis, structure elucidation, and Structure−Antituberculosis activity relationship investigation. J. Med. Chem. 2004, 47, 6760-6767.
https://doi.org/10.1021/jm0495632

[28]. Yusuf, M.; Khan, R. A.; Ahmed, B. Syntheses and anti-depressant activity of 5-amino-1, 3, 4-thiadiazole-2-thiol imines and thiobenzyl derivatives. Bioorg. Med. Chem. 2008, 16, 8029-8034.
https://doi.org/10.1016/j.bmc.2008.07.056

[29]. Turner, S.; Myers, M.; Gadie, B.; Nelson, A. J.; Pape, R.; Saville, J. F.; Doxey, J. C.; Berridge, T. L. Antihypertensive thiadiazoles. 1. Synthesis of some 2-aryl-5-hydrazino-1,3,4-thiadiazoles with vasodilator activity. J. Med. Chem. 1988, 31, 902-906.
https://doi.org/10.1021/jm00400a003

[30]. Mosa, M. N.; Baiwn, R. S.; Mohammed, A. K. Synthesis and characterization of the novel compounds containing imidazole, thiadiazole, Schiff base, and azetidinone chromospheres as a new antibacterial agents. Journal of Drug Delivery Technology 2020, 10 (4), 602-607.

[31]. Mukhtar, S.; Hassan, A.; Morsy, N.; Hafez, T.; Hassaneen, H.; Saleh, F. Overview on synthesis, reactions, applications, and biological activities of Schiff bases. Egypt. J. Chem. 2021, 64 (11), 6541-6554.

[32]. Mobinikhaledi, A.; Jabbarpour, M.; Hamta, A. Synthesis of some novel and biologically active Schiff bases bearing a 1,3,4-thiadiazole moiety under acidic and ptc conditions. J. Chil. Chem. Soc. 2011, 56, 812-814.
https://doi.org/10.4067/S0717-97072011000300020

[33]. Sah, P.; Bidawat, P.; Seth, M.; Gharu, C. P. Synthesis of formazans from Mannich base of 5-(4-chlorophenyl amino)-2-mercapto-1,3,4-thiadiazole as antimicrobial agents. Arab. J. Chem. 2014, 7, 181-187.
https://doi.org/10.1016/j.arabjc.2010.10.023

[34]. Yousif, E.; Rentschler, E.; Salih, N.; Salimon, J.; Hameed, A.; Katan, M. Synthesis and antimicrobial screening of tetra Schiff bases of 1,2,4,5-tetra (5-amino-1,3,4-thiadiazole-2-yl)benzene. J. Saudi Chem. Soc. 2014, 18, 269-275.
https://doi.org/10.1016/j.jscs.2011.07.007

[35]. Bayrak, H.; Demirbas, A.; Karaoglu, S. A.; Demirbas, N. Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur. J. Med. Chem. 2009, 44, 1057-1066.
https://doi.org/10.1016/j.ejmech.2008.06.019

[36]. Bagul, S. D.; Rajput, J. D.; Srivastava, C.; Bendre, R. S. Insect growth regulatory activity of carvacrol-based 1,3,4-thiadiazoles and 1,3,4-oxadiazoles. Mol. Divers. 2018, 22, 647-655.
https://doi.org/10.1007/s11030-018-9823-6

[37]. Amnerkar, N. D.; Bhongade, B. A.; Bhusari, K. P. Synthesis and biological evaluation of some 4-(6-substituted-1,3-benzothiazol-2-yl)amino-1,3-thiazole-2-amines and their Schiff bases. Arab. J. Chem. 2015, 8, 545-552.
https://doi.org/10.1016/j.arabjc.2014.11.034

[38]. Yin, D. W.; Sun, X. M.; Liu, Y. T. Ferrocene-based with Thiadiazole antibacterial agents: Synthesis, characterization, and biological evaluation. Appl. Mech. Mater. 2012, 189, 181-184.
https://doi.org/10.4028/www.scientific.net/AMM.189.181

[39]. Alwan, S. M. Synthesis and preliminary antimicrobial activities of new arylideneamino-1,3,4-thiadiazole-(thio/dithio)-acetamido cephalosporanic acids. Molecules 2012, 17, 1025-1038.
https://doi.org/10.3390/molecules17011025

[40]. Popiołek, Ł.; Matraszek, M.; Piasecka, P.; Pataj, K.; Bińczak, M.; Celiński, M.; Biernasiuk, A. Synthesis and In vitro Antimicrobial Activity of New Schiff Bases of 1,3,4-thiadiazole and 1,2,4-triazole. Int. Res. J. Pure Appl. Chem. 2015, 7, 69-77.
https://doi.org/10.9734/IRJPAC/2015/16459

[41]. Rezki, N.; Al-Yahyawi, A.; Bardaweel, S.; Al-Blewi, F.; Aouad, M. Synthesis of novel 2,5-disubstituted-1,3,4-thiadiazoles clubbed 1,2,4-triazole, 1,3,4-thiadiazole, 1,3,4-oxadiazole and/or Schiff base as potential antimicrobial and antiproliferative agents. Molecules 2015, 20, 16048-16067.
https://doi.org/10.3390/molecules200916048

[42]. Tang, J.; Liu, J.; Wu, F. Molecular docking studies and biological evaluation of 1,3,4-thiadiazole derivatives bearing Schiff base moieties as tyrosinase inhibitors. Bioorg. Chem. 2016, 69, 29-36.
https://doi.org/10.1016/j.bioorg.2016.09.007

[43]. Küçükgüzel, Ş. G.; Çıkla-Süzgün, P. Recent advances bioactive 1,2,4-triazole-3-thiones. Eur. J. Med. Chem. 2015, 97, 830-870.
https://doi.org/10.1016/j.ejmech.2014.11.033

[44]. Rajiv, N.; Sreelakshmi, N.; Rajan, J.; Pappachen, K. L. A review on synthesis of benzothiazine analogues. Res. J. Pharm. Technol. 2017, 10, 1791.
https://doi.org/10.5958/0974-360X.2017.00316.X

[45]. Akram, E.; Daham, S. N.; Rashad, A. A.; Mahmood, A. E. Synthesis and evaluation the activity of 1, 3, 4-thiadiazole derivatives as antibacterial agent against common pathogenic bacteria. Al-Nahrain Journal of Science 2019, 22, 25-32.
https://doi.org/10.22401/ANJS.22.1.04

[46]. Ibrahim, D. H.; Saleem, A. J.; Awad, A. A.; Ahmed, H. S.; Shneshil, M. K. Antioxidant and Antibacterial activity of some 2-amino-1,3,4-thiadiazole Schiff's bases. J. Phys. Conf. Ser. 2019, 1294, 052029.
https://doi.org/10.1088/1742-6596/1294/5/052029

[47]. Babu, K. A.; Singhvi, I.; Ravindra, N.; Shaik, A. B. Antimicrobial and antitubercular evaluation of some new 5-amino-1,3,4-thiadiazole-2-thiol derived Schiff bases. Rev. Roum. Chim. 2020, 65, 771-776.
https://doi.org/10.33224/rrch.2020.65.9.01

[48]. Gür, M.; Yerlikaya, S.; Şener, N.; Özkınalı, S.; Baloglu, M. C.; Gökçe, H.; Altunoglu, Y. C.; Demir, S.; Şener, İ. Antiproliferative-antimicrobial properties and structural analysis of newly synthesized Schiff bases derived from some 1,3,4-thiadiazole compounds. J. Mol. Struct. 2020, 1219, 128570.
https://doi.org/10.1016/j.molstruc.2020.128570

[49]. Mahmoud, H. K.; Abbas, A. A.; Gomha, S. M. Synthesis, antimicrobial evaluation and molecular docking of new functionalized bis(1,3,4-thiadiazole) and bis(thiazole) derivatives. Polycycl. Aromat. Compd. 2021, 41, 2029-2041.
https://doi.org/10.1080/10406638.2019.1709085

[50]. Pattanayak, P.; Saravanan, K. Synthesis and biological activity of some novel metronidazole derivatives containing a 1,3,4-thiadiazole Schiff base moiety. Russ. J. Org. Chem. 2022, 58, 99-105.
https://doi.org/10.1134/S1070428022010146

[51]. Jorgensen, J. H.; Ferraro, M. J. Antimicrobial susceptibility testing: general principles and contemporary practices. Clin. Infect. Dis. 1998, 26, 973-980.
https://doi.org/10.1086/513938

[52]. Espinel-Ingroff, A.; Canton, E.; Fothergill, A.; Ghannoum, M.; Johnson, E.; Jones, R. N.; Ostrosky-Zeichner, L.; Schell, W.; Gibbs, D. L.; Wang, A.; Turnidge, J. Quality control guidelines for amphotericin B, itraconazole, posaconazole, and voriconazole disk diffusion susceptibility tests with nonsupplemented Mueller-Hinton agar (CLSI M51-A document) for nondermatophyte filamentous fungi. J. Clin. Microbiol. 2011, 49, 2568-2571.
https://doi.org/10.1128/JCM.00393-11

[53]. Jiménez-Esquilín, A. E.; Roane, T. M. Antifungal activities of actinomycete strains associated with high-altitude sagebrush rhizosphere. J. Ind. Microbiol. Biotechnol. 2005, 32, 378-381.
https://doi.org/10.1007/s10295-005-0007-x

[54]. Liu, Y.; Tortora, G.; Ryan, M. E.; Lee, H.-M.; Golub, L. M. Potato dextrose agar antifungal susceptibility testing for yeasts and molds: Evaluation of phosphate effect on antifungal activity of CMT-3. Antimicrob. Agents Chemother. 2002, 46, 1455-1461.
https://doi.org/10.1128/AAC.46.5.1455-1461.2002

[55]. Rodríguez-Tudela, J. L.; Barchiesi, F.; Bille, J.; Chryssanthou, E.; Cuenca-Estrella, M.; Denning, D.; Donnelly, J. P.; Dupont, B.; Fegeler, W.; Moore, C.; Richardson, M.; Verweij, P. E. Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts. Clin. Microbiol. Infect. 2003, 9, i-viii.
https://doi.org/10.1046/j.1469-0691.2003.00789.x

[56]. Hamad, H. Q.; Taher, S. G.; Aziz, D. M. Synthesis and molecular docking studies of new series of bis-Schiff bases Thiadiazoles derived from disulfides and thioethers with potent antibacterial properties. Science Journal of University of Zakho 2022, 10, 130-139.
https://doi.org/10.25271/sjuoz.2022.10.3.932

[57]. Sachdeva, H.; Saroj, R.; Khaturia, S.; Dwivedi, D.; Prakash Chauhan, O. Green route for efficient synthesis of novel amino acid Schiff bases as potent antibacterial and antifungal agents and evaluation of cytotoxic effects. J. Chem. 2014, 2014, 1-12.
https://doi.org/10.1155/2014/848543

Supporting Agencies

Department of Chemistry, Faculty of Bhagirathi Purnapatre Arts, Sitabai Mangilal Agrawal Science and Kasturbai Khandu Chaudhari Commerce College Chalisgaon, Maharashtra, 424101, India.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).