European Journal of Chemistry

Synthesis of coumarin-3-carboxylic acids in waste curd water: A green approach

Crossmark


Main Article Content

Nitin Bhaidas Sonawane
Jamatsing Dabarsing Rajput
Dilip Ramsing Patil

Abstract

An efficient and green protocol has been developed for the synthesis of derivatives of coumarin-3-carboxylic acid using waste curd water as a catalytic solvent. Curd water successfully catalyzes the reaction of 2-hydroxybenzaldehydes with dimethyl malonate under ultrasonic irradiation (40 °C) to construct different scaffolds of coumarin-3-carboxylic acid, with good to outstanding yields. The use of biodegradable solvents, sustainability, low reaction duration, mild reaction conditions without metals and Lewis acids, excellent yields, and compatibility with a wide range of electronically diverse substrates are all advantages of this synthesis process. Acidic curd water, which acts as a biological catalyst as well as a solvent for the reaction under ultrasonic irradiation, may be a better green alternative to some standard methods for synthesizing coumarin-3-carboxylic acids.


icon graph This Abstract was viewed 726 times | icon graph Article PDF downloaded 406 times

How to Cite
(1)
Sonawane, N. B.; Rajput, J. D.; Patil, D. R. Synthesis of Coumarin-3-Carboxylic Acids in Waste Curd Water: A Green Approach. Eur. J. Chem. 2023, 14, 439-444.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Barot, K. P.; Jain, S. V.; Kremer, L.; Singh, S.; Ghate, M. D. Recent advances and therapeutic journey of coumarins: current status and perspectives. Med. Chem. Res. 2015, 24, 2771-2798.
https://doi.org/10.1007/s00044-015-1350-8

[2]. Garg, S. S.; Gupta, J.; Sharma, S.; Sahu, D. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action. Eur. J. Pharm. Sci. 2020, 152, 105424.
https://doi.org/10.1016/j.ejps.2020.105424

[3]. Kamel, N. N.; Aly, H. F.; Fouad, G. I.; Abd El-Karim, S. S.; Anwar, M. M.; Syam, Y. M.; Elseginy, S. A.; Ahmed, K. A.; Booles, H. F.; Shalaby, M. B.; Khalil, W. K. B.; Sandhir, R.; Deshwal, S.; Rizk, M. Z. Anti-Alzheimer activity of new coumarin-based derivatives targeting acetylcholinesterase inhibition. RSC Adv. 2023, 13, 18496-18510.
https://doi.org/10.1039/D3RA02344C

[4]. Li, H.; Yao, Y.; Li, L. Coumarins as potential antidiabetic agents. J. Pharm. Pharmacol. 2017, 69, 1253-1264.
https://doi.org/10.1111/jphp.12774

[5]. Majnooni, M. B.; Fakhri, S.; Smeriglio, A.; Trombetta, D.; Croley, C. R.; Bhattacharyya, P.; Sobarzo-Sánchez, E.; Farzaei, M. H.; Bishayee, A. Antiangiogenic effects of coumarins against cancer: From chemistry to medicine. Molecules 2019, 24, 4278.
https://doi.org/10.3390/molecules24234278

[6]. Gao, L.; Wang, F.; Chen, Y.; Li, F.; Han, B.; Liu, D. The antithrombotic activity of natural and synthetic coumarins. Fitoterapia 2021, 154, 104947.
https://doi.org/10.1016/j.fitote.2021.104947

[7]. Shi, Y.; Zhou, C.-H. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 2011, 21, 956-960.
https://doi.org/10.1016/j.bmcl.2010.12.059

[8]. Markad, D.; Khullar, S.; Mandal, S. K. A primary amide-functionalized heterogeneous catalyst for the synthesis of coumarin-3-carboxylic acids via a tandem reaction. Inorg. Chem. 2020, 59, 11407-11416.
https://doi.org/10.1021/acs.inorgchem.0c01178

[9]. Manevich, Y.; Held, K. D.; Biaglow, J. E. Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation. Radiat. Res. 1997, 148, 580-591.
https://doi.org/10.2307/3579734

[10]. Irvine, M. W.; Costa, B. M.; Volianskis, A.; Fang, G.; Ceolin, L.; Collingridge, G. L.; Monaghan, D. T.; Jane, D. E. Coumarin-3-carboxylic acid derivatives as potentiators and inhibitors of recombinant and native N-methyl-d-aspartate receptors. Neurochem. Int. 2012, 61, 593-600.
https://doi.org/10.1016/j.neuint.2011.12.020

[11]. Specht, D. P.; Martic, P. A.; Farid, S. Ketocoumarins. Tetrahedron 1982, 38, 1203-1211.
https://doi.org/10.1016/0040-4020(82)85104-1

[12]. Piermatti, O.; Pizzo, F.; Fringuelli, F. One-pot synthesis of 3-carboxycoumarins via consecutive knoevenagel and Pinner reactions in water. Synthesis (Mass.) 2003, 2331-2334.
https://doi.org/10.1055/s-2003-41061

[13]. Scott, J. L.; Raston, C. L. Solvent-free synthesis of 3-carboxycoumarins. Green Chem. 2000, 2, 245-247.
https://doi.org/10.1039/b006704k

[14]. Li, J.-T.; Xing, C.-Y.; Li, T.-S. An efficient and environmentally friendly method for synthesis of arylmethylenemalononitrile catalyzed by Montmorillonite K10-ZnCl2 under ultrasound irradiation. J. Chem. Technol. Biotechnol. 2004, 79, 1275-1278.
https://doi.org/10.1002/jctb.1123

[15]. Fiorito, S.; Genovese, S.; Taddeo, V. A.; Epifano, F. Microwave-assisted synthesis of coumarin-3-carboxylic acids under ytterbium triflate catalysis. Tetrahedron Lett. 2015, 56, 2434-2436.
https://doi.org/10.1016/j.tetlet.2015.03.079

[16]. Pandey, A. K.; Kumar, A.; Srivastava, S. K.; Modanawal, V. K.; Shrivash, M. K. Efficient synthesis of 3-substituted coumarins as potential anti-microbial agents. Journal of scientific research 2020, 64, 176-181.
https://doi.org/10.37398/JSR.2020.640138

[17]. Angeletti, E.; Canepa, C.; Martinetti, G.; Venturello, P. Silica gel functionalized with amino groups as a new catalyst for Knoevenagel condensation under heterogeneous catalysis conditions. Tetrahedron Lett. 1988, 29, 2261-2264.
https://doi.org/10.1016/S0040-4039(00)86727-1

[18]. Brahmachari, G. Room temperature one-pot green synthesis of coumarin-3-carboxylic acids in water: A practical method for the large-scale synthesis. ACS Sustain. Chem. Eng. 2015, 3, 2350-2358.
https://doi.org/10.1021/acssuschemeng.5b00826

[19]. Karami, B.; Farahi, M.; Khodabakhshi, S. Rapid synthesis of novel and known coumarin-3-carboxylic acids using stannous chloride dihydrate under solvent-free conditions. Helv. Chim. Acta 2012, 95, 455-460.
https://doi.org/10.1002/hlca.201100342

[20]. Bardajee, G.; Jafarpour, F.; Afsari, H. ZrOCl2 · 8H2O: An efficient catalyst for rapid one-pot synthesis of 3-carboxycoumarins under ultrasound irradiation in water. Open Chem. 2010, 8, 370-374.
https://doi.org/10.2478/s11532-009-0141-9

[21]. Valizadeh, H.; Gholipur, H.; Shockravi, A. Microwave assisted synthesis of coumarins vi apotassium carbonate catalyzed knoevenagel condensation in 1-n-butyl-3-methylimidazolium bromide ionic liquid. J. Heterocycl. Chem. 2007, 44, 867-870.
https://doi.org/10.1002/jhet.5570440419

[22]. Keshavarzipour, F.; Tavakol, H. The synthesis of coumarin derivatives using choline chloride/zinc chloride as a deep eutectic solvent. J. Iran. Chem. Soc. 2016, 13, 149-153.
https://doi.org/10.1007/s13738-015-0722-9

[23]. Bandgar, B. P.; Uppalla, L. S.; Kurule, D. S. Solvent-free one-pot rapid synthesis of 3-carboxycoumarins. Green Chem. 1999, 1, 243-245.
https://doi.org/10.1039/a905811g

[24]. Chavan, H. V.; Bandgar, B. P. Aqueous extract of acacia concinna pods: An efficient surfactant type catalyst for synthesis of 3-carboxycoumarins and cinnamic acids via knoevenagel condensation. ACS Sustain. Chem. Eng. 2013, 1, 929-936.
https://doi.org/10.1021/sc4000237

[25]. Kantharaju, K.; Hiremath, P. B. Application of novel, efficient and agro-waste sourced catalyst for Knoevenagel condensation reaction. Indian Journal of Chemistry -Section B 2020, 59, 258-270.

[26]. Bagul, S. D.; Rajput, J. D.; Bendre, R. S. Synthesis of 3-carboxycoumarins at room temperature in water extract of banana peels. Environ. Chem. Lett. 2017, 15, 725-731.
https://doi.org/10.1007/s10311-017-0645-z

[27]. Sinha, S.; Srivastava, A.; Mehrotra, T.; Singh, R. A review on the dairy industry waste water characteristics, its impact on environment and treatment possibilities. In Emerging Issues in Ecology and Environmental Science; Springer International Publishing: Cham, 2019; pp. 73-84.
https://doi.org/10.1007/978-3-319-99398-0_6

[28]. Rajput, J.; Koli, S.; Mohite, B.; Bendre, R.; Patil, S.; Patil, V. A green tactic for the synthesis of classical 3,3-bisindolylmethanes in waste curd water. SN Appl. Sci. 2019, 1, 1187.
https://doi.org/10.1007/s42452-019-1212-y

[29]. Martínez, J.; Sánchez, L.; Pérez, F. J.; Carranza, V.; Delgado, F.; Reyes, L.; Miranda, R. Uncatalysed production of coumarin-3-carboxylic acids: A green approach. J. Chem. 2016, 2016, 1-6.
https://doi.org/10.1155/2016/4678107

Supporting Agencies

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).