European Journal of Chemistry

Geochemical survey of the Nyamyumba and Bugarama hot springs in the western province of Rwanda

Crossmark


Main Article Content

Anzelim Eliwa Sunguti
Theoneste Muhizi
Joshua Kiprotich Kibet
Thomas Karanja Kinyanjui

Abstract

The focus of the current study was to investigate the presence of selected trace metals (Pb, Cd, Mn, Ni, and Cu) and to determine the major cation and anion levels in Nyamyumba and Bugarama hot springs in the Western Province of Rwanda. The trace metals were determined using micro plasma atomic emission spectroscopy. The mean Cu concentrations in Nyamyumba and Bugarama were found to be 0.1 mg/L and were within the permissible limits of the World Health Organization (WHO) for potable water. Similarly, Mn concentrations were within acceptable WHO limits with mean concentrations being 0.04±0.02 and 0.11±0.03 mg/L in Nyamyumba and Bugarama, respectively. The lead concentration was found to be above the WHO limits with mean results of 0.01±0.001 and 0.013±0.01 mg/L in Nyamyumba and Bugarama, respectively. The mean concentration of cadmium was 0.01 mg/L in both sampling sites, which is observed to be above the allowed WHO limit. Nickel, on the other hand, was found to be below the detection limit. The fluoride concentration was determined using the SPADNS Ultra Violet Spectroscopic (UV-VIS) method and its mean levels were found to be 1.07±0.05 and 0.85±0.07 mg/L in Nyamyumba and Bugarama, correspondingly, which is within the acceptable limit of the WHO. Due to the potential pollution trends identified in this study, it is recommended that biosorption remediation techniques be applied for potable and therapeutic water usage to reduce the levels of Pb and Cd, which can have serious etiological risks to both flora and fauna due to possible trace metal bioaccumulation.


icon graph This Abstract was viewed 447 times | icon graph Article PDF downloaded 220 times

How to Cite
(1)
Sunguti, A. E.; Muhizi, T.; Kibet, J. K.; Kinyanjui, T. K. Geochemical Survey of the Nyamyumba and Bugarama Hot Springs in the Western Province of Rwanda. Eur. J. Chem. 2024, 15, 31-38.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Ndikubwimana, I.; Mao, X.; Niyonsenga, J. D.; Zhu, D.; Mwizerwa, S. Water-rock interaction, formation and circulation mechanism of highly bicarbonate groundwater in the northwestern geothermal prospects of Rwanda. Episodes 2022, 45, 73-86.
https://doi.org/10.18814/epiiugs/2021/021006

[2]. Uwiduhaye, J. D.; Mizunaga, H.; Saibi, H. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda. J. Afr. Earth Sci. 2018, 139, 184-192.
https://doi.org/10.1016/j.jafrearsci.2017.12.016

[3]. Rahman, A.; Farrok, O.; Haque, M. M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279.
https://doi.org/10.1016/j.rser.2022.112279

[4]. Kırlı, M. S.; Fahrioğlu, M. Sustainable development of Turkey: Deployment of geothermal resources for carbon capture, utilization, and storage. Energy Sources Recovery Util. Environ. Eff. 2019, 41, 1739-1751.
https://doi.org/10.1080/15567036.2018.1549149

[5]. Gunnlaugsson, E.; Armannsson, H.; Thorhallsson, S.; Steingrimsson, B. Problems in geothermal operation - scaling and corrosion. https://gogn.orkustofnun.is/unu-gtp-sc/UNU-GTP-SC-18-19.pdf (accessed August 17, 2023).

[6]. Omenda, P. A. The geology and geothermal activity of the east African rift. https://gogn.orkustofnun.is/unu-gtp-sc/UNU-GTP-SC-19-1102.pdf (accessed August 17, 2023).

[7]. Abbas, T.; Ahmed Bazmi, A.; Waheed Bhutto, A.; Zahedi, G. Greener energy: Issues and challenges for Pakistan-geothermal energy prospective. Renew. Sustain. Energy Rev. 2014, 31, 258-269.
https://doi.org/10.1016/j.rser.2013.11.043

[8]. Darnet, M.; Calcagno, P.; Hauksdottir, S.; Thorbjornsson, D.; Trumpy, E.; de Wit, J.; Fridriksson, T. Defining best practices in the management of geothermal exploration data. 2019. https://doi.org/10.48550/ arXiv.1908.07865 (accessed August 17, 2023).

[9]. Ochieng, L. Overview of geothermal surface exploration methods. https://gogn.orkustofnun.is/unu-gtp-sc/UNU-GTP-SC-23-0101.pdf (accessed August 17, 2023).

[10]. Shah, M.; Sircar, A.; Vaidya, D.; Sahajpal, S.; Chaudhary, A.; Dhale, S. Overview of geothermal surface exploration methods. Int. J. Adv. Res. Innov. Ideas Educ. 2015, 1, 55-64.

[11]. International Atomic Energy Agency, Isotope and Geochemical Techniques Applied to Geothermal Investigations, IAEA-TECDOC-788, IAEA, Vienna (1995), https://www.osti.gov/etdeweb/servlets/purl/ 48362 (accessed August 17, 2023).

[12]. Li, J.; Zhang, L.; Ruan, C.; Tian, G.; Sagoe, G.; Wang, X. Estimates of reservoir temperatures for non-magmatic convective geothermal systems: Insights from the Ranwu and Rekeng geothermal fields, western Sichuan Province, China. J. Hydrol. (Amst.) 2022, 609, 127668.
https://doi.org/10.1016/j.jhydrol.2022.127668

[13]. Shah, M.; Sircar, A.; Shaikh, N.; Patel, K.; Sharma, D.; Vaidya, D. Comprehensive geochemical/hydrochemical and geo-thermometry analysis of Unai geothermal field, Gujarat, India. Acta Geochim. 2019, 38, 145-158.
https://doi.org/10.1007/s11631-018-0291-6

[14]. Pandey, V.; Chotaliya, B.; Bist, N.; Yadav, K.; Sircar, A. Geochemical analysis and quality assessment of geothermal water in Gujarat, India. Energy Geoscience 2023, 4, 59-73.
https://doi.org/10.1016/j.engeos.2022.08.001

[15]. Kazmierczak, J.; Marty, N.; Weibel, R.; Nielsen, L. H.; Holmslykke, H. D. The risk of scaling in Danish geothermal plants and its effect on the reservoir properties predicted by hydrogeochemical modelling. Geothermics 2022, 105, 102542.
https://doi.org/10.1016/j.geothermics.2022.102542

[16]. Wanner, C.; Eichinger, F.; Jahrfeld, T.; Diamond, L. W. Causes of abundant calcite scaling in geothermal wells in the Bavarian Molasse Basin, Southern Germany. Geothermics 2017, 70, 324-338.
https://doi.org/10.1016/j.geothermics.2017.05.001

[17]. Bodrud-Doza, M.; Islam, S. M. D.-U.; Rume, T.; Quraishi, S. B.; Rahman, M. S.; Bhuiyan, M. A. H. Groundwater quality and human health risk assessment for safe and sustainable water supply of Dhaka City dwellers in Bangladesh. Groundw. Sustain. Dev. 2020, 10, 100374.
https://doi.org/10.1016/j.gsd.2020.100374

[18]. Barbier, E. Geothermal energy technology and current status: an overview. Renew. Sustain. Energy Rev. 2002, 6, 3-65.
https://doi.org/10.1016/S1364-0321(02)00002-3

[19]. Jehan, S.; Khattak, S. A.; Muhammad, S.; Ali, L.; Rashid, A.; Hussain, M. L. Human health risks by potentially toxic metals in drinking water along the Hattar Industrial Estate, Pakistan. Environ. Sci. Pollut. Res. Int. 2020, 27, 2677-2690.
https://doi.org/10.1007/s11356-019-07219-y

[20]. Bambino, K.; Chu, J. Zebrafish in toxicology and environmental health. In Current Topics in Developmental Biology; Elsevier, 2017; pp. 331-367.
https://doi.org/10.1016/bs.ctdb.2016.10.007

[21]. Javed, M.; Usmani, N. An overview of the adverse effects of heavy metal contamination on fish health. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2019, 89, 389-403.
https://doi.org/10.1007/s40011-017-0875-7

[22]. Stein, E. D.; Cohen, Y.; Winer, A. M. Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 1996, 26, 1-43.
https://doi.org/10.1080/10643389609388485

[23]. Vasanthi, N.; Muthukumaravel, K.; Sathick, O.; Sugumaran, J. Toxic effect of mercury on the freshwater fish Oreochromis mossambicus, Research journal of life sciences, bioinformatics, pharmaceutical and chemical sciences 2019, 5, 366. https://doi.org/10.26479/ 2019.0503.30 (accessed August 17, 2023).

[24]. Ishihara, N. The term "Minamata disease" should be replaced by the term "methylmercury poisoning". Trace Elem. Electrolytes 2018, 35, 47-50. https://www.dustri.com/nc/de/journals-in-english/mag/ trace-elements-and-electrolytes/vol/volume-35-2018/issue/1st-quarter-15.html (accessed August 17, 2023).
https://doi.org/10.5414/TEX01497

[25]. Onipe, T.; Edokpayi, J. N.; Odiyo, J. O. A review on the potential sources and health implications of fluoride in groundwater of Sub-Saharan Africa. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2020, 55, 1078-1093.
https://doi.org/10.1080/10934529.2020.1770516

[26]. Mwiathi, N. F.; Gao, X.; Li, C.; Rashid, A. The occurrence of geogenic fluoride in shallow aquifers of Kenya Rift Valley and its implications in groundwater management. Ecotoxicol. Environ. Saf. 2022, 229, 113046.
https://doi.org/10.1016/j.ecoenv.2021.113046

[27]. Ayoob, S.; Gupta, A. K. Fluoride in drinking water: A review on the status and stress effects. Crit. Rev. Environ. Sci. Technol. 2006, 36, 433-487.
https://doi.org/10.1080/10643380600678112

[28]. Solanki, Y. S.; Agarwal, M.; Gupta, A. B.; Gupta, S.; Shukla, P. Fluoride occurrences, health problems, detection, and remediation methods for drinking water: A comprehensive review. Sci. Total Environ. 2022, 807, 150601.
https://doi.org/10.1016/j.scitotenv.2021.150601

[29]. Srivastava, S.; Flora, S. J. S. Fluoride in drinking water and skeletal fluorosis: A review of the global impact. Curr. Environ. Health Rep. 2020, 7, 140-146.
https://doi.org/10.1007/s40572-020-00270-9

[30]. Ghosh, A.; Mukherjee, K.; Ghosh, S. K.; Saha, B. Sources and toxicity of fluoride in the environment. Res. Chem. Intermed. 2013, 39, 2881-2915.
https://doi.org/10.1007/s11164-012-0841-1

[31]. APHA. Standard methods for the examination of water and wastewater, 22nd edition edited by E. W. Rice, R. B. Baird, A. D. Eaton and L. S. Clesceri. American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF), Washington, D.C., USA, 2012.

[32]. Tabatabai, M. A. A rapid method for determination of sulfate in water samples. Environ. Lett. 1974, 7, 237-243.
https://doi.org/10.1080/00139307409437403

[33]. Towns, T. G. Determination of aqueous phosphate by ascorbic acid reduction of phosphomolybdic acid. Anal. Chem. 1986, 58, 223-229.
https://doi.org/10.1021/ac00292a054

[34]. Norman, R. J.; Edberg, J. C.; Stucki, J. W. Determination of nitrate in soil extracts by dual‐wavelength ultraviolet spectrophotometry. Soil Sci. Soc. Am. J. 1985, 49, 1182-1185.
https://doi.org/10.2136/sssaj1985.03615995004900050022x

[35]. Edwards, A. C.; Hooda, P. S.; Cook, Y. Determination of nitrate in water containing dissolved organic carbon by ultraviolet spectroscopy. Int. J. Environ. Anal. Chem. 2001, 80, 49-59.
https://doi.org/10.1080/03067310108044385

[36]. Sen, A.; Rao, K. K.; Frizzell, M. A.; Rao, G. A low-cost device for the estimation of fluoride in drinking water. Field Anal. Chem. Technol. 1998, 2, 51-58.
https://doi.org/10.1002/(SICI)1520-6521(1998)2:1<51::AID-FACT6>3.3.CO;2-Q

[37]. Pratama, I. W. P. A.; Parwata, I. M. O. A.; Subhaktiyasa, P. G. Analysis Of Chloride Content In Dug Well Water In Banjar Telaga, Kutampi Kaler Village, Nusa Penida District, Klungkung Regency With Argentometric Titration. Bali Medika Jurnal 2017, 4, 1-4.
https://doi.org/10.36376/bmj.v4i1.51

[38]. Andersen, C. B. Understanding carbonate equilibria by measuring alkalinity in experimental and natural systems. J. Geosci. Educ. 2002, 50, 389-403.
https://doi.org/10.5408/1089-9995-50.4.389

[39]. Kim, J.; Vipulanandan, C. Effect of pH, sulfate and sodium on the EDTA titration of calcium. Cem. Concr. Res. 2003, 33, 621-627.
https://doi.org/10.1016/S0008-8846(02)01043-8

[40]. Yappert, M. C.; DuPre, D. B. Complexometric titrations: Competition of complexing agents in the determination of water hardness with EDTA. J. Chem. Educ. 1997, 74, 1422.
https://doi.org/10.1021/ed074p1422

[41]. Nielsen, S. S. Food Analysis Laboratory Manual; Springer International Publishing: Cham, 2017, https://doi.org/10.1007/978-3-319-44127-6 (accessed August 17, 2023).
https://doi.org/10.1007/978-3-319-44127-6

[42]. Banerjee, P.; Prasad, B. Determination of concentration of total sodium and potassium in surface and ground water using a flame photometer. Appl. Water Sci. 2020, 10, 113.
https://doi.org/10.1007/s13201-020-01188-1

[43]. Sewawa, K.; Mosekiemang, T.; Dintwe, K.; Mazrui, N.; Ngxangxa, S.; Dikinya, O.; Sichilongo, K.; Mbongwe, B.; Atlhopheng, J. Comparison of internal standard and standard additions calibration procedures for the determination of selected heavy metals in treated municipal effluent by MP-AES. Results Chem. 2023, 5, 100907.
https://doi.org/10.1016/j.rechem.2023.100907

[44]. Rutagarama, U.; Varet, J. Conceptual model for Kilwa geothermal site North East Kivu Lake, Rubavu, Rwanda, Proceedings, 7th African Rift Geothermal Conference Kigali, Rwanda 31st October - 2nd November 2018.

[45]. Lund, J. W.; Boyd, T. L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics 2016, 60, 66-93.
https://doi.org/10.1016/j.geothermics.2015.11.004

[46]. Uwera, J.; Itoi, R.; Jalilinasrabady, S.; Jóhannesson, T.; Benediktsson, D. Ö. Design of a cooling system using geothermal energy for storage of agricultural products with emphasis on Irish potatoes in Rwanda, Africa. https://publications.mygeoenergynow.org/grc/1032145.pdf (accessed August 17, 2023).

[47]. Sircar, A.; Yadav, K.; Bist, N.; Oza, H. Geochemical characterization of geothermal spring waters occurring in southern part of Gujarat and West Coast Geothermal Province of Maharashtra, India. Sustain. Water Resour. Manag. 2022, 8, 7.
https://doi.org/10.1007/s40899-021-00597-7

[48]. Gaurav, Y.; Pandey, N. D.; Kumar, P. D. Assessment of Ground Water Quality and its Impact on Health of people around Rewa City, MP, India. Int. Res. J. Environment Sci. 2014, 3 (7), 70-72, http://www.isca.me/IJENS/Archive/v3/i7/11.ISCA-IRJEvS-2014-127.pdf (accessed August 17, 2023).

[49]. Renaut, R. W.; Owen, R. B.; Ego, J. K. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: Impact of lake level changes. J. Afr. Earth Sci. 2017, 129, 623-646.
https://doi.org/10.1016/j.jafrearsci.2017.01.012

[50]. Cruz-Fuentes, T.; Cabrera, M. del C.; Heredia, J.; Custodio, E. Groundwater salinity and hydrochemical processes in the volcano-sedimentary aquifer of La Aldea, Gran Canaria, Canary Islands, Spain. Sci. Total Environ. 2014, 484, 154-166.
https://doi.org/10.1016/j.scitotenv.2014.03.041

[51]. Hategekimana, F.; Mugerwa, T.; Nsengiyumva, C.; Byiringiro, F. V.; Rwatangabo, D. E. R. Geochemical characterization of Nyamyumba Hot Springs, northwest Rwanda. AppliedChem 2022, 2, 247-258.
https://doi.org/10.3390/appliedchem2040017

[52]. Ghilamicael, A. M.; Boga, H. I.; Anami, S. E.; Mehari, T.; Budambula, N. Physical and chemical characteristics of five Hot Springs in Eritrea. J. Nat. Sci. Res. 2017, 7. http://41.89.240.73/handle/123456789/1450 (accessed August 17, 2023).

[53]. Cioni, R.; Fanelli, G.; Guidi, M.; Kinyariro, J. K.; Marini, L. Lake Bogoria hot springs (Kenya): geochemical features and geothermal implications. J. Volcanol. Geotherm. Res. 1992, 50, 231-246.
https://doi.org/10.1016/0377-0273(92)90095-U

[54]. World Health Organization, Manganese in drinking-water, https://www.who.int/publications/i/item/WHO-HEP-ECH-WSH-2021.5 (accessed August 17, 2023).

[55]. Desai, V.; Kaler, S. G. Role of copper in human neurological disorders. Am. J. Clin. Nutr. 2008, 88, 855S-858S.
https://doi.org/10.1093/ajcn/88.3.855S

[56]. Osredkar, J.; Sustar, N. Copper and zinc, biological role and significance of copper/zinc imbalance J. Clinic. Toxicol. 2011, S3, 1, https://www.peirsoncenter.com/uploads/6/0/5/5/6055321/copper-and-zinc-biological-role-and-significance-of-copper-zincimbalance-2161-0495.s3-001.pdf (accessed August 17, 2023).

[57]. Khanam, R.; Kumar, A.; Nayak, A. K.; Shahid, M.; Tripathi, R.; Vijayakumar, S.; Bhaduri, D.; Kumar, U.; Mohanty, S.; Panneerselvam, P.; Chatterjee, D.; Satapathy, B. S.; Pathak, H. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sci. Total Environ. 2020, 699, 134330.
https://doi.org/10.1016/j.scitotenv.2019.134330

[58]. Shahid, M.; Dumat, C.; Khalid, S.; Niazi, N. K.; Antunes, P. M. C. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. In Reviews of Environmental Contamination and Toxicology; Springer International Publishing: Cham, 2016; pp. 73-137.
https://doi.org/10.1007/398_2016_8

[59]. Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of heavy metals from industrial wastewaters: A review. ChemBioEng Rev. 2017, 4, 37-59.
https://doi.org/10.1002/cben.201600010

[60]. Mwewa, B.; Tadie, M.; Ndlovu, S.; Simate, G. S.; Matinde, E. Recovery of rare earth elements from acid mine drainage: A review of the extraction methods. J. Environ. Chem. Eng. 2022, 10, 107704.
https://doi.org/10.1016/j.jece.2022.107704

[61]. Mehta, S. K.; Gaur, J. P. Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Crit. Rev. Biotechnol. 2005, 25, 113-152.
https://doi.org/10.1080/07388550500248571

[62]. Fu, L.; Pujari-Palmer, M.; Öhman-Magi, C.; Engqvist, H.; Xia, W. Calcium phosphate cements: Structure-related properties. In The Chemistry of Inorganic Biomaterials; The Royal Society of Chemistry, 2021; pp. 99-133.
https://doi.org/10.1039/9781788019828-00099

[63]. Crini, G.; Lichtfouse, E.; Wilson, L. D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195-213.
https://doi.org/10.1007/s10311-018-0786-8

[64]. Gurav, T.; Singh, H. K.; Chandrasekharam, D. Major and trace element concentrations in the geothermal springs along the west coast of Maharashtra, India. Arab. J. Geosci. 2016, 9, 44.
https://doi.org/10.1007/s12517-015-2139-2

[65]. Kaasalainen, H.; Stefánsson, A. The chemistry of trace elements in surface geothermal waters and steam, Iceland. Chem. Geol. 2012, 330-331, 60-85.
https://doi.org/10.1016/j.chemgeo.2012.08.019

[66]. McKenzie, E. J.; Brown, K. L.; Cady, S. L.; Campbell, K. A. Trace metal chemistry and silicification of microorganisms in geothermal sinter, Taupo Volcanic Zone, New Zealand. Geothermics 2001, 30, 483-502.
https://doi.org/10.1016/S0375-6505(01)00004-9

Supporting Agencies

College of Science and Technology, University of Rwanda, P.O Box 3900, Kigali, Rwanda., Egerton University, P.O Box 536-20115, Egerton, Kenya
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).