European Journal of Chemistry

Organic contaminants in the groundwater of the Kerio Valley water basin, Baringo County, Kenya

Crossmark


Main Article Content

Festus Kipkemoi Langat
Joshua Kiprotich Kibet
Francis Inyangala Okanga
John Onyango Adongo

Abstract

Currently, groundwater is largely becoming the main source of fresh water in most developing countries. However, various deleterious impacts resulting from anthropogenic activities beneath the earth’s surface have significantly affected groundwater quality, as evidenced in several areas endowed with mineral and hydrocarbon deposits, agricultural activities, and industrial processes. The possible etiological impacts may include cancer and genetic aberrations which result from the toxic effects of organic waterborne contaminants ingested by humans and animals over time. The motivation behind this study was to identify and determine the concentration profiles of various organic pollutants in the wells located along the Kerio Valley water basin near the exploratory wells for hydrocarbons and mining activities. Therefore, this study is necessary in unraveling the level of organic contaminants in the sampled borehole water, which can then be extrapolated to cover other boreholes within the Kerio Valley basin. The study was carried out during the dry season of December 2022. The water samples from the boreholes were extracted using a solid phase extraction procedure and characterized using a gas chromatograph interfaced with a mass selective detector. The findings indicate that benzene derivatives which were mainly xylenes, 1,3,5-trimethylbenzene, 1-ethyl-3-methylbenzene, 1-methyl-2-propylpentylbenzene and polycyclic aromatic hydrocarbons such as naphthalene, phenanthrene, fluoranthene, azulene, and pyrene were found in most of the boreholes sampled. Furthermore, long-chain hydrocarbons were present in all groundwater samples with varying concentrations. The concentration of benzene derivatives ranged from 2.84 to 20.47 ppm. However, polycyclic hydrocarbons exhibited the highest concentrations of all organic pollutants, with pyrene giving a concentration of 23.14 ppm, fluoranthene (18.54 ppm), phenanthrene (14.13 ppm) and anthracene (11.06 ppm). According to the findings reported in this study, most of the borehole water in the Kerio Valley basin is contaminated and may be unsafe for drinking. Most of the reported concentration levels were several times higher than the standards of the U.S. Environmental and Protection Agency. However, it is necessary to develop a policy framework on the assessment and monitoring of water quality in the region and propose urgent measures to ensure a clean water supply for the benefit of residents.


icon graph This Abstract was viewed 1221 times | icon graph Article PDF downloaded 264 times

How to Cite
(1)
Langat, F. K.; Kibet, J. K.; Okanga, F. I.; Adongo, J. O. Organic Contaminants in the Groundwater of the Kerio Valley Water Basin, Baringo County, Kenya. Eur. J. Chem. 2023, 14, 337-347.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Akhtar, N.; Syakir Ishak, M. I.; Bhawani, S. A.; Umar, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water (Basel) 2021, 13, 2660.
https://doi.org/10.3390/w13192660

[2]. Larocque, M.; Broda, S. Groundwater-surface water interactions in Canada. Can. Water Resourc. J./Rev. Can. Ressour. Hydr. 2016, 41, 451-454.
https://doi.org/10.1080/07011784.2016.1176537

[3]. Stuart, M.; Lapworth, D.; Crane, E.; Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 2012, 416, 1-21.
https://doi.org/10.1016/j.scitotenv.2011.11.072

[4]. Davies, M. I. J.; Kipruto, T. K.; Moore, H. L. Revisiting the irrigated agricultural landscape of the Marakwet, Kenya: tracing local technology and knowledge over the recent past. Azania 2014, 49, 486-523.
https://doi.org/10.1080/0067270X.2014.979527

[5]. Sarker, B.; N. Keya, K.; I. Mahir, F.; M. Nahiun, K.; Shahida, S.; A. Khan, R. Surface and ground water pollution: Causes and effects of urbanization and industrialization in South Asia. Sci. Rev. 2021, 32-41.
https://doi.org/10.32861/sr.73.32.41

[6]. Jolly, I. D.; McEwan, K. L.; Holland, K. L. A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology 2008, 1, 43-58.
https://doi.org/10.1002/eco.6

[7]. Burri, N. M.; Weatherl, R.; Moeck, C.; Schirmer, M. A review of threats to groundwater quality in the anthropocene. Sci. Total Environ. 2019, 684, 136-154.
https://doi.org/10.1016/j.scitotenv.2019.05.236

[8]. Hajivand, P.; Vaziri, A. Optimization of demulsifier formulation for separation of water from crude oil emulsions. Braz. J. Chem. Eng. 2015, 32, 107-118.
https://doi.org/10.1590/0104-6632.20150321s00002755

[9]. Cicek, E.; Eagderi, S.; Sungur, S.; Secer, B. Species of Oxynoemacheilus bănărescu & nalbant, 1966 (Actinopterygii: Nemacheilidae) in the Turkish part of the Kura-Aras river system, with the first detailed evidence for the occurrence of O. bergianus (Derjavin, 1934) and O. cf. Elsae. Acta Zoologica Bulgarica 2021, 73, 171-178 http://www.acta-zoologica-bulgarica.eu/2021/002435.

[10]. Jia, C.; Zheng, M.; Zhang, Y. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Pet. Explor. Dev. 2012, 39, 139-146.
https://doi.org/10.1016/S1876-3804(12)60026-3

[11]. Gordalla, B. C.; Ewers, U.; Frimmel, F. H. Hydraulic fracturing: a toxicological threat for groundwater and drinking-water? Environ. Earth Sci. 2013, 70, 3875-3893.
https://doi.org/10.1007/s12665-013-2672-9

[12]. Ossai, I. C.; Ahmed, A.; Hassan, A.; Hamid, F. S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innov. 2020, 17, 100526.
https://doi.org/10.1016/j.eti.2019.100526

[13]. He, X.; Li, P.; Shi, H.; Xiao, Y.; Guo, Y.; Zhao, H. Identifying strontium sources of flowback fluid and groundwater pollution using 87Sr/86Sr and geochemical model in Sulige gasfield, China. Chemosphere 2022, 306, 135594.
https://doi.org/10.1016/j.chemosphere.2022.135594

[14]. Koelmel, J. P.; Lin, E. Z.; DeLay, K.; Williams, A. J.; Zhou, Y.; Bornman, R.; Obida, M.; Chevrier, J.; Godri Pollitt, K. J. Assessing the external exposome using wearable passive samplers and high-resolution mass spectrometry among south African children participating in the VHEMBE study. Environ. Sci. Technol. 2022, 56, 2191-2203.
https://doi.org/10.1021/acs.est.1c06481

[15]. Shin, H.-M.; Moschet, C.; Young, T. M.; Bennett, D. H. Measured concentrations of consumer product chemicals in California house dust: Implications for sources, exposure, and toxicity potential. Indoor Air 2020, 30, 60-75.
https://doi.org/10.1111/ina.12607

[16]. Badjadi, M. A.; Zhu, H.; Zhang, C.; Naseem, M. H. Enhancing water management in shale gas extraction through rectangular pulse hydraulic fracturing. Sustainability 2023, 15, 10795.
https://doi.org/10.3390/su151410795

[17]. Bombino, G.; Andiloro, S.; Folino, A.; Lucas-Borja, M. E.; Zema, D. A. Short-term effects of olive oil mill wastewater application on soil water repellency. Agric. Water Manag. 2021, 244, 106563.
https://doi.org/10.1016/j.agwat.2020.106563

[18]. Nigam, N.; Kumar, S. Contamination of water resources: With special reference to groundwater pollution. In Water Scarcity, Contamination and Management; Elsevier, 2022; pp. 169-186.
https://doi.org/10.1016/B978-0-323-85378-1.00010-6

[19]. Ritter, L.; Solomon, K.; Sibley, P.; Hall, K.; Keen, P.; Mattu, G.; Linton, B. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. J. Toxicol. Environ. Health Part A. 2002, 65, 1-142.
https://doi.org/10.1080/152873902753338572

[20]. Wu, J.; Li, P.; Qian, H. Hydrochemical characterization of drinking groundwater with special reference to fluoride in an arid area of China and the control of aquifer leakage on its concentrations. Environ. Earth Sci. 2015, 73, 8575-8588.
https://doi.org/10.1007/s12665-015-4018-2

[21]. Pan, Y. P.; Wang, Y. S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmos. Chem. Phys. 2015, 15, 951-972.
https://doi.org/10.5194/acp-15-951-2015

[22]. Kibet, J.; Khachatryan, L.; Dellinger, B. Molecular products and radicals from pyrolysis of lignin. Environ. Sci. Technol. 2012, 46, 12994-13001.
https://doi.org/10.1021/es302942c

[23]. Laurence, M.; Kibet, J. K.; Ngari, S. M. The degradation of O-ethyltoluene and 1,3,5-trimethylbenzene in Lake Naivasha wetland, Kenya. Bull. Environ. Contam. Toxicol. 2018, 101, 288-293.
https://doi.org/10.1007/s00128-018-2387-4

[24]. Kibet, J. K.; Khachatryan, L.; Dellinger, B. Phenols from pyrolysis and co-pyrolysis of tobacco biomass components. Chemosphere 2015, 138, 259-265.
https://doi.org/10.1016/j.chemosphere.2015.06.003

[25]. Bosire, J. O. Particulate emissions from selected combustion sources and their pathological impacts on the lung tissues of male albino mice, http://41.89.96.81:8080/xmlui/handle/123456789/1548, Egerton University, 2016.

[26]. Rosenblum, J.; Thurman, E. M.; Ferrer, I.; Aiken, G.; Linden, K. G. Organic chemical characterization and mass balance of a hydraulically fractured well: From fracturing fluid to produced water over 405 days. Environ. Sci. Technol. 2017, 51, 14006-14015.
https://doi.org/10.1021/acs.est.7b03362

[27]. Zhang, H.; Han, X.; Wang, G.; Mao, H.; Chen, X.; Zhou, L.; Huang, D.; Zhang, F.; Yan, X. Spatial distribution and driving factors of groundwater chemistry and pollution in an oil production region in the Northwest China. Sci. Total Environ. 2023, 875, 162635.
https://doi.org/10.1016/j.scitotenv.2023.162635

[28]. Adenuga, D.; Carrillo, J.-C.; Mckee, R. H. The sub-chronic oral toxicity of 1,3,5-trimethylbenzene in Sprague-Dawley rats. Regul. Toxicol. Pharmacol. 2014, 69, 143-153.
https://doi.org/10.1016/j.yrtph.2014.03.006

[29]. Dietert, R. R.; Hedge, A. Toxicological considerations in evaluating indoor air quality and human health: impact of new carpet emissions. Crit. Rev. Toxicol. 1996, 26, 633-707.
https://doi.org/10.3109/10408449609037480

[30]. Deziel, N. C.; Clark, C. J.; Casey, J. A.; Bell, M. L.; Plata, D. L.; Saiers, J. E. Assessing exposure to unconventional oil and gas development: Strengths, challenges, and implications for epidemiologic research. Curr. Environ. Health Rep. 2022, 9, 436-450.
https://doi.org/10.1007/s40572-022-00358-4

[31]. Aslam, R.; Sharif, F.; Baqar, M.; Nizami, A.-S. Association of human cohorts exposed to blood and urinary biomarkers of PAHs with adult asthma in a South Asian metropolitan city. Environ. Sci. Pollut. Res. Int. 2023, 30, 35945-35957.
https://doi.org/10.1007/s11356-022-24445-z

[32]. Cheng, G.; Zhang, X.; Li, J.; Han, X.; Li, F.; Sun, M. Variation of organic matter and releasing risk assessment of pentachlorophenol (PCP) in sewage sludge composting. Water Air Soil Pollut. 2023, 234, 242.
https://doi.org/10.1007/s11270-023-06257-0

[33]. Gearhart-Serna, L. M.; Jayasundara, N.; Tacam, M., Jr; Di Giulio, R.; Devi, G. R. Assessing cancer risk associated with aquatic polycyclic aromatic hydrocarbon pollution reveals dietary routes of exposure and vulnerable populations. J. Environ. Public Health 2018, 2018, 5610462.
https://doi.org/10.1155/2018/5610462

[34]. Oz, E. Mutagenic and/or carcinogenic compounds in meat and meat products: polycyclic aromatic hydrocarbons perspective. Theory Pr. Meat Process. 2022, 7, 282-287.
https://doi.org/10.21323/2414-438X-2022-7-4-282-287

[35]. Das, D. N.; Ravi, N. Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. Environ. Res. 2022, 213, 113677.
https://doi.org/10.1016/j.envres.2022.113677

[36]. Reizer, E.; Viskolcz, B.; Fiser, B. Formation and growth mechanisms of polycyclic aromatic hydrocarbons: A mini-review. Chemosphere 2022, 291, 132793.
https://doi.org/10.1016/j.chemosphere.2021.132793

[37]. Argiolas, A.; Argiolas, F. M.; Argiolas, G.; Melis, M. R. Erectile dysfunction: Treatments, advances and new therapeutic strategies. Brain Sci. 2023, 13, 802.
https://doi.org/10.3390/brainsci13050802

[38]. Valero-Navarro, A.; Damiani, P. C.; Fernández-Sánchez, J. F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Chemometric-assisted MIP-optosensing system for the simultaneous determination of monoamine naphthalenes in drinking waters. Talanta 2009, 78, 57-65.
https://doi.org/10.1016/j.talanta.2008.10.045

[39]. Mirzaee, E.; Sartaj, M. Synthesis and evaluation of recoverable activated carbon/Fe3O4 composites for removal of polycyclic aromatic hydrocarbons from aqueous solution. Environ. Technol. Innov. 2022, 25, 102174.
https://doi.org/10.1016/j.eti.2021.102174

[40]. Bruzzoniti, M. C.; Fungi, M.; Sarzanini, C. Determination of EPA's priority pollutant polycyclic aromatic hydrocarbons in drinking waters by solid phase extraction-HPLC. Anal. Methods 2010, 2, 739-745.
https://doi.org/10.1039/b9ay00203k

[41]. Oyekunle, J. A. O.; Durodola, S. S.; Adekunle, A. S.; Afolabi, F. P.; Ore, O. T.; Lawal, M. O.; Ojo, O. S. Potentially toxic metals and polycyclic aromatic hydrocarbons composition of some popular biscuits in Nigeria. Chem. Afr. 2021, 4, 399-410.
https://doi.org/10.1007/s42250-020-00215-7

[42]. Akinsanya, B.; Ayanda, I. O.; Onwuka, B.; Saliu, J. K. Bioaccumulation of BTEX and PAHs in Heterotis niloticus (Actinopterygii) from the Epe Lagoon, Lagos, Nigeria. Heliyon 2020, 6, e03272.
https://doi.org/10.1016/j.heliyon.2020.e03272

[43]. Ambade, B.; Sethi, S. S.; Kurwadkar, S.; Kumar, A.; Sankar, T. K. Toxicity and health risk assessment of polycyclic aromatic hydrocarbons in surface water, sediments and groundwater vulnerability in Damodar River Basin. Groundw. Sustain. Dev. 2021, 13, 100553.
https://doi.org/10.1016/j.gsd.2021.100553

[44]. Li, Z.; Wu, Y.; Zhao, Y.; Wang, L.; Zhu, H.; Qin, L.; Feng, F.; Wang, W.; Wu, Y. Analysis of coal tar pitch and smoke extract components and their cytotoxicity on human bronchial epithelial cells. J. Hazard. Mater. 2011, 186, 1277-1282.
https://doi.org/10.1016/j.jhazmat.2010.11.123

[45]. Kovalev, I. S.; Taniya, O. S.; Slovesnova, N. V.; Kim, G. A.; Santra, S.; Zyryanov, G. V.; Kopchuk, D. S.; Majee, A.; Charushin, V. N.; Chupakhin, O. N. Fluorescent detection of 2,4-DNT and 2,4,6-TNT in aqueous media by using simple water-soluble pyrene derivatives. Chem. Asian J. 2016, 11, 775-781.
https://doi.org/10.1002/asia.201501310

[46]. Yang, Y.; Chen, Z.; Zhang, J.; Wu, S.; Yang, L.; Chen, L.; Shao, Y. The challenge of micropollutants in surface water of the Yangtze River. Sci. Total Environ. 2021, 780, 146537.
https://doi.org/10.1016/j.scitotenv.2021.146537

[47]. Zhang, Y.; Dong, S.; Wang, H.; Tao, S.; Kiyama, R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ. Pollut. 2016, 213, 809-824.
https://doi.org/10.1016/j.envpol.2016.03.050

[48]. Onydinma, U. P.; Aljerf, L.; Obike, A.; Onah, O. E.; Caleb, N. J. Evaluation of physicochemical characteristics and health risk of polycyclic aromatic hydrocarbons in borehole waters around automobile workshops in Southeastern Nigeria. Groundw. Sustain. Dev. 2021, 14, 100615.
https://doi.org/10.1016/j.gsd.2021.100615

[49]. Fernie, K. J.; Marteinson, S. C.; Chen, D.; Eng, A.; Harner, T.; Smits, J. E. G.; Soos, C. Elevated exposure, uptake and accumulation of polycyclic aromatic hydrocarbons by nestling tree swallows (Tachycineta bicolor) through multiple exposure routes in active mining-related areas of the Athabasca oil sands region. Sci. Total Environ. 2018, 624, 250-261.
https://doi.org/10.1016/j.scitotenv.2017.12.123

[50]. Tao, Z.; Liu, C.; He, Q.; Chang, H.; Ma, J. Detection and treatment of organic matters in hydraulic fracturing wastewater from shale gas extraction: A critical review. Sci. Total Environ. 2022, 824, 153887.
https://doi.org/10.1016/j.scitotenv.2022.153887

[51]. Skvortsov, V. A. Assessment of the oil and gas potential of the basement of the southern part of the Siberian platform and deep-seated oil exploration. Dokl. Earth Sci. 2020, 492, 302-305.
https://doi.org/10.1134/S1028334X20050220

[52]. Elsamahy, T.; Sun, J.; Elsilk, S. E.; Ali, S. S. Biodegradation of low-density polyethylene plastic waste by a constructed tri-culture yeast consortium from wood-feeding termite: Degradation mechanism and pathway. J. Hazard. Mater. 2023, 448, 130944.
https://doi.org/10.1016/j.jhazmat.2023.130944

[53]. Inyang, S. E.; Aliyu, A. B.; Oyewale, A. O. Total petroleum hydrocarbon content in surface water and sediment of Qua-Iboe River, Ibeno, Akwa-Ibom State, Nigeria. J. Appl. Sci. Environ. Manage. 2019, 22, 1953.
https://doi.org/10.4314/jasem.v22i12.14

[54]. Fatehbasharzad, P.; Aliasghari, S.; Shaterzadeh Tabrizi, I.; Khan, J. A.; Boczkaj, G. Microbial fuel cell applications for removal of petroleum hydrocarbon pollutants: A review. Water Resour. Ind. 2022, 28, 100178.
https://doi.org/10.1016/j.wri.2022.100178

[55]. Fu, L.; Wei, M.; Liao, K.; Qianli, M.; Shao, M.; Gu, F.; Fan, Y.; Longjie, L.; Yanfeng, H. Application of environmentally stimuli-responsive materials in the development of oil and gas field. J. Pet. Sci. Eng. 2022, 219, 111088.
https://doi.org/10.1016/j.petrol.2022.111088

[56]. Engels, H.-W.; Pirkl, H.-G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: versatile materials and sustainable problem solvers for today's challenges. Angew. Chem. Int. Ed Engl. 2013, 52, 9422-9441.
https://doi.org/10.1002/anie.201302766

[57]. Logeshwaran, P.; Megharaj, M.; Chadalavada, S.; Bowman, M.; Naidu, R. Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environ. Technol. Innov. 2018, 10, 175-193.
https://doi.org/10.1016/j.eti.2018.02.001

[58]. Truskewycz, A.; Gundry, T. D.; Khudur, L. S.; Kolobaric, A.; Taha, M.; Aburto-Medina, A.; Ball, A. S.; Shahsavari, E. Petroleum hydrocarbon contamination in terrestrial ecosystems-fate and microbial responses. Molecules 2019, 24, 3400.
https://doi.org/10.3390/molecules24183400

[59]. Saravanan, A.; Senthil Kumar, P.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P. R.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595.
https://doi.org/10.1016/j.chemosphere.2021.130595

[60]. Cao, S.; Zhan, G.; Wei, K.; Zhou, B.; Zhang, H.; Gao, T.; Zhang, L. Raman spectroscopic and microscopic monitoring of on-site and in-situ remediation dynamics in petroleum contaminated soil and groundwater. Water Res. 2023, 233, 119777.
https://doi.org/10.1016/j.watres.2023.119777

[61]. Vandana; Priyadarshanee, M.; Mahto, U.; Das, S. Mechanism of toxicity and adverse health effects of environmental pollutants. In Microbial Biodegradation and Bioremediation; Elsevier, 2022; pp. 33-53.
https://doi.org/10.1016/B978-0-323-85455-9.00024-2

[62]. Shrestha, T. M.; Bhatta, S.; Balayar, R.; Pokhrel, S.; Pant, P.; Nepal, G. Diesel siphoner's lung: An unusual cause of hydrocarbon pneumonitis. Clin. Case Rep. 2021, 9, 416-419.
https://doi.org/10.1002/ccr3.3545

[63]. Kuppusamy, S.; Maddela, N. R.; Megharaj, M.; Venkateswarlu, K. Impact of total petroleum hydrocarbons on human health. In Total Petroleum Hydrocarbons; Springer International Publishing: Cham, 2020; pp. 139-165.
https://doi.org/10.1007/978-3-030-24035-6_6

[64]. Zhang, G.; He, L.; Guo, X.; Han, Z.; Ji, L.; He, Q.; Han, L.; Sun, K. Mechanism of biochar as a biostimulation strategy to remove polycyclic aromatic hydrocarbons from heavily contaminated soil in a coking plant. Geoderma 2020, 375, 114497.
https://doi.org/10.1016/j.geoderma.2020.114497

[65]. Lee, K. J.; Choi, K. Non-carcinogenic health outcomes associated with polycyclic aromatic hydrocarbons (PAHs) exposure in humans: An umbrella review. Expo. Health 2023, 15, 95-111.
https://doi.org/10.1007/s12403-022-00475-3

[66]. Mallah, M. A.; Changxing, L.; Mallah, M. A.; Noreen, S.; Liu, Y.; Saeed, M.; Xi, H.; Ahmed, B.; Feng, F.; Mirjat, A. A.; Wang, W.; Jabar, A.; Naveed, M.; Li, J.-H.; Zhang, Q. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere 2022, 296, 133948.
https://doi.org/10.1016/j.chemosphere.2022.133948

[67]. Bakun, P.; Czarczynska-Goslinska, B.; Goslinski, T.; Lijewski, S. In vitro and in vivo biological activities of azulene derivatives with potential applications in medicine. Med. Chem. Res. 2021, 30, 834-846.
https://doi.org/10.1007/s00044-021-02701-0

[68]. Hou, B.; Zhou, Z.; Yu, C.; Xue, X.-S.; Zhang, J.; Yang, X.; Li, J.; Ge, C.; Wang, J.; Gao, X. 2,6-azulene-based homopolymers: Design, synthesis, and application in proton exchange membrane fuel cells. ACS Macro Lett. 2022, 11, 680-686.
https://doi.org/10.1021/acsmacrolett.2c00164

[69]. Struwe, M.; Csato, M.; Singer, T.; Gocke, E. Comprehensive assessment of the photomutagenicity, photogenotoxicity and photo(cyto)toxicity of azulene. Mutat. Res. 2011, 723, 129-133.
https://doi.org/10.1016/j.mrgentox.2011.03.017

[70]. Sahoo, B. M.; Ravi Kumar, B. V. V.; Banik, B. K.; Borah, P. Polyaromatic hydrocarbons (PAHs): Structures, synthesis and their biological profile. Curr. Org. Synth. 2020, 17, 625-640.
https://doi.org/10.2174/1570179417666200713182441

[71]. Abadi, D. R. V.; Tahmasbizadeh, M.; Arfaeinia, H.; Masjedi, M. R.; Ramavandi, B.; Poureshgh, Y. Biomonitoring of unmetabolized polycyclic aromatic hydrocarbons (PAHs) in urine of waterpipe/cigarette café workers. Environ. Sci. Pollut. Res. Int. 2023, 30, 22728-22742.
https://doi.org/10.1007/s11356-022-23822-y

[72]. Ielo, L.; Patamia, V.; Citarella, A.; Schirmeister, T.; Stagno, C.; Rescifina, A.; Micale, N.; Pace, V. Selective noncovalent proteasome inhibiting activity of trifluoromethyl-containing gem-quaternary aziridines. Arch. Pharm. (Weinheim) 2023, 356, e2300174.
https://doi.org/10.1002/ardp.202300174

[73]. Kim, J.-H.; Kim, W.-K. Use of the integrated biomarker response to measure the effect of short-term exposure to dibenz[a,h]anthracene in common carp (Cyprinus carpio). Bull. Environ. Contam. Toxicol. 2016, 96, 496-501.
https://doi.org/10.1007/s00128-015-1726-y

[74]. El-Khateeb, M. Household hazardous waste: Handling, precaution and hazard reduction. Egypt. J. Chem. 2022, 65 (8), 625-642.

[75]. Wollin, K.-M.; Damm, G.; Foth, H.; Freyberger, A.; Gebel, T.; Mangerich, A.; Gundert-Remy, U.; Partosch, F.; Röhl, C.; Schupp, T.; Hengstler, J. G. Critical evaluation of human health risks due to hydraulic fracturing in natural gas and petroleum production. Arch. Toxicol. 2020, 94, 967-1016.
https://doi.org/10.1007/s00204-020-02758-7

[76]. Deo, P.; Sahu, K. K.; Dhibar, D. P.; Varma, S. C. Naphthalene ball poisoning: a rare cause of acquired methaemoglobinaemia. BMJ Case Rep. 2016, 2016.
https://doi.org/10.1136/bcr-2016-215102

Supporting Agencies

Egerton University, P.O Box 536-20115, Egerton, Kenya
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).