European Journal of Chemistry

Single and mixed dithiocarbamato metal(III) complexes (Co, Rh, and Ir): Crystal and molecular structure description and interplay

Crossmark


Main Article Content

Ibukun Oluwaseun Shotonwa
Adebayo Ponle Oduwole
Oluwapelumi Martin Agosu
Abosede Funke Yusuf
Simeon Okechukwu Eze

Abstract

This review focuses on the crystal and molecular structures of single and mixed dithiocarbamate ligands of cobalt, rhodium, and iridium in the +3 oxidation state. The complexities of their chelating and bridging modes come into play through modification of the substituents on the carbamate nitrogen atoms of the ligands and additional coordination of secondary phosphino-containing ligands, culminating in various applications such as biological, analytical, medicine, and catalysis. Other considerations include the geometrical coordination environments around the metal centres and their comparison with isostructural congeners. The distortions around the metal centres and their subsequent effects on the symmetries of bonds in the primary and secondary coordination spheres are discussed. The trans-effects of secondary P-ligands and their effects on geometrical alignment and structural stability have become valuable yardsticks in analyzing structural modifications and stabilities.


icon graph This Abstract was viewed 8 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
Shotonwa, I. O.; Oduwole, A. P.; Agosu, O. M.; Yusuf, A. F.; Eze, S. O. Single and Mixed Dithiocarbamato metal(III) Complexes (Co, Rh, and Ir): Crystal and Molecular Structure Description and Interplay. Eur. J. Chem. 2024, 15, 291-301.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Odularu, A. T.; Ajibade, P. A. Dithiocarbamates: Challenges, control, and approaches to excellent yield, characterization, and their biological applications. Bioinorg. Chem. Appl. 2019, 2019, 1-15.
https://doi.org/10.1155/2019/8260496

[2]. Hogarth, G. Transition Metal Dithiocarbamates: 1978-2003. Progress in Inorganic Chemistry 2005, 71-561.
https://doi.org/10.1002/0471725587.ch2

[3]. Adachi, M.; Kita, M.; Kashiwabara, K.; Fujita, J.; Iitaka, N.; Kurachi, S.; Ohba, S.; Jin, D.-M. Preparation and Characterization of Cobalt(III) Complexes Containing 1,1′-Bis(diphenylphosphino)ferrocene (dppf) or 1,1′-Bis(dimethylphosphino)ferrocene (dmpf) as a Bidentate Ligand, and Molecular Structures of [Co(acac)2(dmpf)]B(C6H5)4 and [Co(dtc)2(dmpf)]B(C6H5)4 (acac = 2,4-pentanedionate ion, dtc = dimethyldithiocarbamate ion). Bull. Chem. Soc. Jpn. 1992, 65, 2037-2044.
https://doi.org/10.1246/bcsj.65.2037

[4]. Matsui, H.; Kita, M.; Kashiwabara, K.; Fujita, J. Preparation and characterization of dithiocarbamatocobalt(III) complexes containing phosphites, and molecular structures of cis-[Co(CH3)2(NCS2)2 P(OCH2)3C(C2H5)2]BF4 and [Co(CH2CH2CH2CH2CH2NCS2){P(OCH3)3}4] (BF4)2. Bull. Chem. Soc. Jpn. 1993, 66, 1140-1148.
https://doi.org/10.1246/bcsj.66.1140

[5]. Suzuki, T.; Iwatsuki, S.; Takagi, H. D.; Kashiwabara, K. A geometrical isomeric pair of novel cobalt(III) complexes containing diphenyl phosphine: cis- and trans-[Co(dtc)2(PHPh2)2]BF4 (dtc = N,N-dimethyldithiocarbamate). Chem. Lett. 2001, 30, 1068-1069.
https://doi.org/10.1246/cl.2001.1068

[6]. Suzuki, T.; Kashiwamura, S.; Kashiwabara, K. Preparation, crystal structures and spectroscopic properties of a series of cobalt(III) phosphine complexes: trans- and cis-[Co(dtc)2(PMe3−nPhn)2]+ (dtc = N,N-dimethyldithiocarbamate; n = 0, 1, 2 or 3). Bull. Chem. Soc. Jpn. 2001, 74, 2349-2359.
https://doi.org/10.1246/bcsj.74.2349

[7]. Iwatsuki, S.; Suzuki, T.; Hasegawa, A.; Funahashi, S.; Kashiwabara, K.; Takagi, H. D. Preparation, crystal structures and isomerization kinetics of cis- and trans-[Co(dtc)2(PHPh2)2]+: thermodynamically and kinetically stable cobalt(III)-P bonds through interplay of σ-donicity, π-acidity, and steric bulkiness. J. Chem. Soc. 2002, 3593-3602.
https://doi.org/10.1039/B203792K

[8]. Brennan, T.; Bernal, I. Crystal and molecular structure of tris(diethyldithiocarbamato)cobalt(III). J. Phys. Chem. 1969, 73, 443-445.
https://doi.org/10.1021/j100722a031

[9]. Kaul, L.; Süss, R.; Zannettino, A.; Richter, K. The revival of dithiocarbamates: from pesticides to innovative medical treatments. iScience 2021, 24, 102092.
https://doi.org/10.1016/j.isci.2021.102092

[10]. Ajiboye, T. O.; Ajiboye, T. T.; Marzouki, R.; Onwudiwe, D. C. The versatility in the applications of dithiocarbamates. Int. J. Mol. Sci. 2022, 23, 1317.
https://doi.org/10.3390/ijms23031317

[11]. Campanale, C.; Triozzi, M.; Ragonese, A.; Losacco, D.; Massarelli, C. Dithiocarbamates: Properties, methodological approaches and challenges to their control. Toxics 2023, 11, 851.
https://doi.org/10.3390/toxics11100851

[12]. Jian, F.; Bei, F.; Zhao, P.; Wang, X.; Fun, H.; Chinnakali, K. Synthesis, crystal structure and stability studies of dithiocarbamate complexes of some transition elements (M=Co, Ni, Pd). J. Coord. Chem. 2002, 55, 429-437.
https://doi.org/10.1080/00958970211907

[13]. Gringeri, A.; Keng, P. C.; Borch, R. F. Diethyldithiocarbamate inhibition of murine bone marrow toxicity caused by cis-diamminedichloro platinum(II) or diammine-(1,1-cyclobutanedicarboxylato) platinum(II). Cancer Res. 1988, 48, 5708-5712.

[14]. Hersh, E. M. Ditiocarb sodium (diethyldithiocarbamate) therapy in patients with symptomatic HIV infection and AIDS: A randomized, double-blind, placebo-controlled, multicenter study. JAMA 1991, 265, 1538.
https://doi.org/10.1001/jama.1991.03460120052035

[15]. Shinobu, L. A.; Jones, S. G.; Jones, M. M. Sodium N‐methyl‐D‐glucamine dithiocarbamate and cadmium intoxication. Acta Pharmacol. Toxicol. (Copenh.) 1984, 54, 189-194.
https://doi.org/10.1111/j.1600-0773.1984.tb01916.x

[16]. Adeyemi, J. O.; Onwudiwe, D. C. The mechanisms of action involving dithiocarbamate complexes in biological systems. Inorganica Chim. Acta 2020, 511, 119809.
https://doi.org/10.1016/j.ica.2020.119809

[17]. Kamoon, R. A.; Nadhum, S. A.; Mohammed, M. H. Dithiocarbamates derivatives as anticancer agents: A Review. Annals of Tropical Medicine and Public Health 2020, 23.
https://doi.org/10.36295/ASRO.2020.232113

[18]. Chung, S. W. C.; Wong, W. W. K. Chromatographic analysis of dithiocarbamate residues and their metabolites in foods employed in dietary exposure studies-a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2022, 39, 1731-1743.
https://doi.org/10.1080/19440049.2022.2103186

[19]. Chawla, S.; Patel, H. K.; Kalasariya, R. L.; Shah, P. G. Validation and analysis of thiram, a dithiocarbamate, as CS2 from soybean (Glycine max) samples on GC-MS. Int. J. Environ. Sci. Technol. (Tehran) 2019, 16, 6991-6998.
https://doi.org/10.1007/s13762-018-2069-0

[20]. Fan, L.; Li, L.; Xu, B.; Qiao, M.; Li, J.; Hou, H. Syntheses, crystal structures and luminescent properties of three complexes with mercapto-thiadiazole ligand involving in situ ligand synthesis. Inorganica Chim. Acta 2014, 423, 46-51.
https://doi.org/10.1016/j.ica.2014.07.041

[21]. Islam, H.-U.; Roffey, A.; Hollingsworth, N.; Bras, W.; Sankar, G.; De Leeuw, N. H.; Hogarth, G. Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials. Nanoscale Adv. 2020, 2, 798-807.
https://doi.org/10.1039/C9NA00665F

[22]. Lee, S. M.; Tiekink, E. R. T. A structural survey of poly-functional dithiocarbamate ligands and the aggregation patterns they sustain. Inorganics 2021, 9, 7.
https://doi.org/10.3390/inorganics9010007

[23]. Chen, T.-T.; Cheung, L. F.; Wang, L.-S. Probing the nature of the transition-metal-boron bonds and novel aromaticity in small metal-doped boron clusters using photoelectron spectroscopy. Annu. Rev. Phys. Chem. 2022, 73, 233-253.
https://doi.org/10.1146/annurev-physchem-082820-113041

[24]. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171-179.
https://doi.org/10.1107/S2052520616003954

[25]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0- new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[26]. Healy, P. C.; Connor, J. W.; Skelton, B. W.; White, A. H. Alkyl substituent effects in diamagnetic dithiocarbamate cobalt(III) and nickel(II) complexes. Aust. J. Chem. 1990, 43, 1083.
https://doi.org/10.1071/CH9901083

[27]. Bonamico, M.; Dessy, G.; Mariani, C.; Vaciago, A.; Zambonelli, L. Structural studies of metal dithiocarbamates. I. The crystal and molecular structure of the α-form of nickel diethyldithiocarbamate. Acta Crystallogr. 1965, 19, 619-626.
https://doi.org/10.1107/S0365110X65003985

[28]. Bonamico, M.; Dessy, G.; Mugnoli, A.; Vaciago, A.; Zambonelli, L. Structural studies of metal dithiocarbamates. II. The crystal and molecular structure of copper diethyldithiocarbamate. Acta Crystallogr. 1965, 19, 886-897.
https://doi.org/10.1107/S0365110X65004619

[29]. Lopez-Castro, A.; Truter, M. R. The crystal and molecular structure of dichlorotetrakisthioureanickel, [(NH2)2CS]4NiCl2. J. Chem. Soc. 1963, 1309.
https://doi.org/10.1039/jr9630001309

[30]. Bolte, M. Tris(N,N-diethyldithiocarbamato-S,S')-cobalt(III). CSD Commun. 2006.

[31]. Iwasaki, H.; Kobayashi, K. Structure of tris(N,N-dimethyldithiocarbamato)cobalt(III). Acta Crystallogr. B 1980, 36, 1657-1659.
https://doi.org/10.1107/S0567740880006838

[32]. Raston, C. L.; White, A. H.; Willis, A. C. Crystal structure of tris(dithiocarbamato)cobalt(III). J. Chem. Soc., Dalton Trans. 1975, 2429.
https://doi.org/10.1039/dt9750002429

[33]. Merlino, S. Crystal and molecular structure of cobalt(III) tris(N,N-diethyldithiocarbamate). Acta Crystallogr. B 1968, 24, 1441-1448.
https://doi.org/10.1107/S0567740868004450

[34]. Hogarth, G.; Rainford-Brent, E.-J. C.-R. C. R.; Kabir, S. E.; Richards, I.; Wilton-Ely, J. D. E. T.; Zhang, Q. Functionalised dithiocarbamate complexes: Synthesis and molecular structures of 2-diethylaminoethyl and 3-dimethylaminopropyl dithiocarbamate complexes [MS2CN{(CH2CH2NEt2)2}n] and [MS2CN{(CH2CH2CH2 NMe2)2}n] (n=2, M=Ni, Cu, Zn, Pd; n=3, M=Co). Inorganica Chim. Acta 2009, 362, 2020-2026.
https://doi.org/10.1016/j.ica.2008.09.030

[35]. Dulare, R.; Bharty, M. K.; Singh, A.; Singh, N. K. Synthesis, spectral and structural studies of 1-ethoxycarbonyl-piperazine-4-carbodithioate and its Co(III), Zn(II) and Cd(II) complexes. Polyhedron 2012, 31, 373-378.
https://doi.org/10.1016/j.poly.2011.09.036

[36]. Gasparri, G. F.; Nardelli, M.; Villa, A. The crystal and molecular structure of nickel bis(dithiocarbamate). Acta Crystallogr. 1967, 23, 384-391.
https://doi.org/10.1107/S0365110X67002841

[37]. Newman, P. W. G.; White, A. H. Crystal structure of bis(NN-di-isopropyldithiocarbamato)nickel(II). J. Chem. Soc., Dalton Trans. 1972, 2239.
https://doi.org/10.1039/dt9720002239

[38]. Newman, P. W. G.; White, A. H. Crystal structure of bis(N-methyl dithiocarbamato)nickel(II). J. Chem. Soc., Dalton Trans. 1972, 1460.
https://doi.org/10.1039/dt9720001460

[39]. Exarchos, G.; Robinson, S. D.; Steed, J. W. The synthesis of new bimetallic complex salts by halide/sulfur chelate cross transfer: X-ray crystal structures of the salts [Ni(S2CNEt2)(dppe)]2[HgBr4], [Pt(S2CNEt2)(dppe)]2[CdCl4], [Co(S2CNEt2)2(dppe)]2[Cl3ZnO:(Ph)2PCH2CH2P(Ph)2:OZnCl3] and [Pd(S2CNnBu2)(bipy)]2[CdCl4]. Polyhedron 2001, 20, 2951-2963.
https://doi.org/10.1016/S0277-5387(01)00885-3

[40]. Ai-Resayes, S. I.; Hitchcock, P. B.; Nixon, J. F. Synthesis and molecular structure of the novel bimetallic complex [CoCl2Ph2P(O)CH2CH2 P(O)Ph22], containing a 14-membered ring. J. Chem. Soc. Chem. Commun. 1991, 78.
https://doi.org/10.1039/c39910000078

[41]. Albertin, G.; Pelizzi, G.; Bordignon, E. Synthesis and characterization of phosphite-containing cobalt(III) complexes obtained via disproportionation reactions of pentacoordinate mononitrosyl derivatives. Crystal structure of trans-bis(isothiocyanato) tetrakis(triethyl phosphite)cobalt(III) tetraphenylborate. Inorg. Chem. 1983, 22, 515-520.
https://doi.org/10.1021/ic00145a029

[42]. Bresciani-Pahor, N.; Forcolin, M.; Marzilli, L. G.; Randaccio, L.; Summers, M. F.; Toscano, P. J. Organocobalt B12 models: axial ligand effects on the structural and coordination chemistry of cobaloximes. Coord. Chem. Rev. 1985, 63, 1-125.
https://doi.org/10.1016/0010-8545(85)80021-7

[43]. Iwasaki, H.; Kobayashi, K. Structure of bis(N,N-diisopropyl dithiocarbamato)copper(II). Acta Crystallogr. B 1980, 36, 1655-1657.
https://doi.org/10.1107/S0567740880006826

[44]. Ohba, S.; Saito, Y.; Ohishi, T.; Kashiwabara, K.; Fujita, J. Structure of (+)589-[1,2-bis(dimethylphosphino)ethane]bis(ethylenediamine)cobalt(III) tribromide sesquihydrate, [Co(C2H8N2)2(C6H16P2)]Br3.3/2H2O. Acta Crystallogr. C 1983, 39, 49-51.
https://doi.org/10.1107/S0108270183003558

[45]. Engelhardt, L. M.; Healy, P. C.; Shephard, R. M.; Skelton, B. W.; White, A. H. Lewis-base adducts of Group 11 metal(I) compounds. 47. A novel series of 1:1, 2:1, and 3:1 heterobimetallic adducts from the reaction of copper(I) halides with tris(dithiocarbamato)cobalt(III) complexes. Inorg. Chem. 1988, 27, 2371-2373.
https://doi.org/10.1021/ic00286a029

[46]. Engelhardt, L. M.; Healy, P. C.; Papasergio, R. I.; White, A. H. Lewis base adducts of Group 11 metal compounds. 10. The 1:1 heterobimetallic adduct of tris(pyrrolidinecarbodithioato)cobalt(III) with copper(I) bromide. Inorg. Chem. 1985, 24, 382-385.
https://doi.org/10.1021/ic00197a027

[47]. Healy, P. C.; Skelton, B. W.; White, A. H. Lewis base adducts of Group 11 metal(I) complexes. Part 48. Heterobimetallic tris(dithio carbamato)cobalt(III)-copper(I) halide adducts as a vehicle for novel copper(I) halide clusters (structurally characterized). J. Chem. Soc., Dalton Trans. 1989, 971-976.
https://doi.org/10.1039/DT9890000971

[48]. Butcher, R. J.; Sinn, E. Crystal and molecular structures of dichloromethane-solvated tris(morpholinocarbodithioato)-complexes of chromium(III), manganese(III), and rhodium(III). Comparison of co-ordination spheres. J. Chem. Soc., Dalton Trans. 1975, 2517.
https://doi.org/10.1039/dt9750002517

[49]. Healy, P. C.; Sinn, E. Solvated tris(4-morpholinecarbodithioato-S,S') complexes of iron(III) and cobalt(III). Direct comparison of d5 and d6 analogs and study of solvation effects. Inorg. Chem. 1975, 14, 109-115.
https://doi.org/10.1021/ic50143a022

[50]. Raston, C. L.; White, A. H. Crystal structures of tris(diethyldi thiocarbamato)-rhodium(III) and -arsenic(III). J. Chem. Soc., Dalton Trans. 1975, 2425.
https://doi.org/10.1039/dt9750002425

[51]. Cano, M.; Ovejero, P.; Heras, J. V.; Pinilla, E.; Ruiz, F. A.; Monge, A. The reactivity of [Rh(S2CNEt2) (CO)2] towards HpzAn. Polyhedron 1998, 17, 2115-2125.
https://doi.org/10.1016/S0277-5387(97)00385-9

[52]. Raston, C. L.; White, A. H. Crystal structure of tris(diethyldithioby carbamato)iridium(III). J. Chem. Soc., Dalton Trans. 1976, 32.
https://doi.org/10.1039/dt9760000032

[53]. Leipoldt, J. G.; Coppens, P. Correlation between structure- and temperature-dependent magnetic behavior of iron dithiocarbamate complexes. Crystal structure of tris(N,N diethyldithiocarbamato) iron(III) at 297.deg. and 79.deg.K. Inorg. Chem. 1973, 12, 2269-2274.
https://doi.org/10.1021/ic50128a012

[54]. Pignolet, L. H. Dynamic stereochemistry of tris-chelate complexes. IV. Crystal structure of tris(N,N-diethyldithiocarbamato)ruthenium(III). Inorg. Chem. 1974, 13, 2051-2055.
https://doi.org/10.1021/ic50139a002

Supporting Agencies

Frank H. Allen International Research and Educational (FAIRE) grant (21188) and the Institution-Based Research Intervention of the Tertiary Education Trust Fund (TETFUND).
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).