European Journal of Chemistry

Structural diversity in the solid-state architectures of bis(4-pyridyl)acetylene and its derivatives

Crossmark


Main Article Content

Ibukun Oluwaseun Shotonwa
Rene Theodoor Boere

Abstract

The crystals of bis(4-pyridyl)acetylene are orthorhombic and belong to the space group Fddd. Solid-state investigation using conventional and Hirshfeld analytical techniques revealed valuable data and structural diversities that explain the wide gap between established crystal reports of co-crystals and metal organic frameworks and the pure form of the title compound. Hirshfeld surface analysis in this wise has proved to be a useful tool in unravelling complex intermolecular interactions and simplifying them at the 2D and 3D levels using sub-tools such as fingerprint plots and electrostatic potential surfaces. Both techniques have shown that the H∙∙∙Npyr interactions in the title compound are shorter than those in its polymorphic counterpart by 0.2 Å. The more stable network provided by hetero-molecular interactions in co-crystals and metal complexes of bis(4-pyridyl)acetylene shed light on their lengthy existence compared to the less favorable homo-molecular interactions in pure molecules of bis(4-pyridyl)acetylene.


icon graph This Abstract was viewed 2242 times | icon graph Article PDF downloaded 755 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Shotonwa, I. O.; Boere, R. T. Structural Diversity in the Solid-State Architectures of bis(4-pyridyl)acetylene and Its Derivatives. Eur. J. Chem. 2020, 11, 6-14.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Yu, B.; Tracey, J. I.; Cheng, Z.; Vacha, M.; O'Carroll, D. M. Phys. Chem. Chem. Phys. 2018, 20, 11749-11757.
https://doi.org/10.1039/C8CP01314D

[2]. Qi, M.; Hulsmann, M.; Godt, A. J. Org. Chem. 2016, 81, 2549-2571.
https://doi.org/10.1021/acs.joc.6b00125

[3]. Pearce, T. R.; Waybrant, B.; Kokkoli, E. Chem. Commun. 2014, 50, 210-212.
https://doi.org/10.1039/C3CC42311E

[4]. Meineke, D. N. H.; Bossi, M. L.; Ta, H.; Belov, V. N.; Hell, S. W. Chem. Eur. J. 2017, 23, 2469-2475.
https://doi.org/10.1002/chem.201605587

[5]. Liese, S.; Netz, R. R. Beilstein J. Org. Chem. 2015, 11, 804-816.
https://doi.org/10.3762/bjoc.11.90

[6]. Rupert, B.; Paoli, M. D.; Rupert, B. L.; Mitchell, W. J.; Ferguson, A. J.; Muhammet, E. K.; Rance, W. L.; Rumbles, G.; Ginley, D. S.; Shaheen, S. E.; Kopidakis, N. J. Mater. Chem. 2009, 19, 5311-5324.
https://doi.org/10.1039/b903427g

[7]. Cann, J.; Dayneko, S.; Sun, J.; Hendsbee, A. D.; Hill, I. G.; Welch, G. C. J. Mater. Chem. C 2017, 5, 2074-2083.
https://doi.org/10.1039/C6TC05107C

[8]. Antina, E. V.; Guseva, G. B.; Loginova, A. E.; Semeikin, A. S.; V'yugin, A. I. Russ. J. Gen. Chem. 2010, 80, 2374-2381.
https://doi.org/10.1134/S107036321011023X

[9]. Rajakumar, P.; Visalakshi, K. Arkivoc, 2011, 10, 213-220.
https://doi.org/10.3998/ark.5550190.0012.a17

[10]. Huang, R.; Chiu, Y.; Chang, Y.; Chen, K.; Huang, P.; Chiang, T.; Chang, Y. J. New J. Chem. 2017, 41, 8016-8025.
https://doi.org/10.1039/C7NJ00413C

[11]. Dallos, T.; Beckmann, D.; Brunklaus, G.; Baumgarten, M. J. Am. Chem. Soc. 2011, 133, 13898-13901.
https://doi.org/10.1021/ja2057709

[12]. Ni, Z.; Liu, J.; Hoque, M. N.; Liu, W.; Li, J.; Chen, Y.; Tong, M. Coord. Chem. Rev. 2017, 335, 28-43.
https://doi.org/10.1016/j.ccr.2016.12.002

[13]. Fenenko, L.; Shao, G.; Orita, A.; Yahiro, M.; Otera, J.; Svechniko, S.; Adachi, C. Chem. Commun. 2007, 2278-2280.
https://doi.org/10.1039/b700466d

[14]. Mahmoudpour, A.; Nafisi, S.; Najafi, E.; and Notash, B.; Main Gr. Met. Chem. 2019, 42, 51-59.
https://doi.org/10.1515/mgmc-2019-0005

[15]. Faukner, T.; Slany, L.; Sloufova, I.; Vohlidal, J.; Zednik, J. Macromol. Res. 2016, 24, 441-449.
https://doi.org/10.1007/s13233-016-4062-0

[16]. Shi, L.; Guo, Y.; Hu, W.; Liu, Y.; Mater. Chem. Front. 2017, 1, 2423-2456.
https://doi.org/10.1039/C7QM00169J

[17]. Seth, S.; Matzger, A. J. Cryst. Growth. Des. 2017, 17, 4043-4048.
https://doi.org/10.1021/acs.cgd.7b00808

[18]. Yuan, S.; Zou, L.; Qin, J.; Li, J.; Huang, L.; Feng, L.; Wang, X.; Bosch, M. Nat. Commun. 2017, 8, 1-10.
https://doi.org/10.1038/ncomms15356

[19]. Yang, X.; Xu, Q. Cryst. Growth. Des. 2017, 17, 1450-1455.
https://doi.org/10.1021/acs.cgd.7b00166

[20]. Dankhoff, K.; Lochenie, C.; Puchtler, F.; Weber, B. Eur. J. Inorg. Chem. 2016, 2016, 2136-2143.
https://doi.org/10.1002/ejic.201501175

[21]. Bajpai, A.; Scott, H. S.; Pham, T.; Chen, K.; Space, B.; Lusi, M.; Perry, M. L.; Zaworotko, M. J. IUCrJ 2016, 3, 430-439.
https://doi.org/10.1107/S2052252516015633

[22]. Dias, S. I. G.; S. Rabac, I. C. Santos, D. Wallis, and M. Almeida, Cryst. Eng. Comm. 2010, 12, 3397-3400.
https://doi.org/10.1039/c003838e

[23]. Carlucci, L.; Ciani, G.; Macchi, P.; Proserpio, D. M. Chem. Commun. 1998, 1, 1837-1838.
https://doi.org/10.1039/a803662d

[24]. Bosch, E. Cryst. Growth. Des. 2010, 10, 3808-3813, .
https://doi.org/10.1021/cg100707y

[25]. Beckmann, J.; Janicke, S. L. Eur. J. Inorg. Chem. 2006, 2006, 3351-3358.
https://doi.org/10.1002/ejic.200600383

[26]. Bartual-murgui, C.; Ortega-Villar, N. A.; Shepherd, H. J.; Munoz, C. M.; Salmon, L.; Bousseksou, A.; Real, J. A. J. Mater. Chem. 2011, 21, 7217-7222.
https://doi.org/10.1039/c0jm04387g

[27]. Tsaggeos, K.; Masiera, N.; Niwicka, A.; Dokorou, V.; Siskos, M. G.; Skoulika, S.; Michaelides, A. Cryst. Growth. Des. 2012, 12, 2187-2194.
https://doi.org/10.1021/cg200681s

[28]. Wang, C.; Batsanov, A. S.; Bryce, M. R.; Martın, S.; Nichols, R. J.; Higgins, S. J.; Suarez, V. M.; Lambert, C. J. J. Am. Chem. Soc. 2009, 131, 15647-15654.
https://doi.org/10.1021/ja9061129

[29]. Sokolov, A. N.; Tomislav, F.; Blais, S.; Ripmeester, J. A.; Macgillivray, L. R. Cryst. Growth. Des. 2006, 6, 2427-2428.
https://doi.org/10.1021/cg0605133

[30]. Ryu, J. Y.; Lee, J. M.; Park, Y. J.; Van Nghia, N.; Lee, M. H.; Lee, J. Organometallics 2013, 32, 7272-7274.
https://doi.org/10.1021/om401145s

[31]. Neogi, S.; Lorenz, Y.; Engeser, M.; Samanta, D.; Schmittel, M. Inorg. Chem. 2013, 52, 6975-6984.
https://doi.org/10.1021/ic400328d

[32]. Desiraju, G. R. J. Am. Chem. Soc. 2013, 135, 9952-9967.
https://doi.org/10.1021/ja403264c

[33]. Choua, S.; Jouaiti, A.; Geoffroy, M. Phys. Chem. Chem. Phys. 1999, 1, 3557-3560.
https://doi.org/10.1039/a902689d

[34]. Zaman, B.; Tomura, M.; Yamashita, Y. J. Org. Chem. 2001, 66, 5987-5995.
https://doi.org/10.1021/jo001746i

[35]. Marin, G.; Andruh, M.; Madalan, A. M.; Blake, A. J.; Wilson, C.; Champness, N. R.; Schroder, M. Cryst. Growth. Des. 2008, 8, 964-975.
https://doi.org/10.1021/cg700879q

[36]. Elacqua, E.; Bucar, D. -K.; Henry, R. F.; Zhang, G. G. Z.; Macgillivray, L. R. Cryst. Growth. Des. 2013, 13, 393-403.
https://doi.org/10.1021/cg301745x

[37]. Tanner, M.; Ludi, A. Chimica 1980, 34, 23-24.
https://doi.org/10.1080/10464883.1980.10758631

[38]. Sheldrick, G. M. Acta. Cryst. Sect. A 2007, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[39]. Boere, R. T.; Roemmele, T. L.; Yu, X. Inorg. Chem. 2011, 50, 5123-5136.
https://doi.org/10.1021/ic2003996

[40]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Streek, J. V.; Wood, P. A. J. Appl. Cryst. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[41]. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer17, University of Western Australia, 2017.

[42]. BioCIS UMR-CNRS-8076, Universite de Paris-Saclay, France, Retrieved Feb 01, 2020, from https://www.sigmaaldrich.com/nmr

[43]. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176-2179.
https://doi.org/10.1021/om100106e

[44]. Allan, J. R.; Barrow, M. J.; Beaumont, P. C.; Macindoe, L. A.; Milburn, G. H. W.; Werninck, A. R. Inorg. Chim. Acta 1988, 148, 85-90.
https://doi.org/10.1016/S0020-1693(00)86015-6

[45]. Sokolov, A. N.; Friscic, T.; Blais, S.; Ripmeester, J. A.; Macgillivray, L. R. Cryst. Growth Des. 2006, 6, 2427-2428.
https://doi.org/10.1021/cg0605133

[46]. Patil, R. S.; Mossine, A. V.; Kumari, H.; Barnes, C. L.; Atwood, J. L. Cryst. Growth Des. 2014, 14, 5212-5218.
https://doi.org/10.1021/cg501014c

[47]. Patil, R. S.; Kumari, H.; Barnes, C. L.; Atwood, J. L. Chem. Commun, 2015, 51, 2304-2307.
https://doi.org/10.1039/C4CC08388A

[48]. Tomura, M.; Yamashita, Y. Chem. Lett. 2001, 6, 532-533.
https://doi.org/10.1246/cl.2001.532

[49]. Bosch, E.; Kruse, S. J.; Groeneman, R. H.; Cryst. Eng. Comm. 2019, 21, 990-993.
https://doi.org/10.1039/C8CE01984C

[50]. Bosch, E. J. Chem. Crystallogr. 2014, 44, 287-292.
https://doi.org/10.1007/s10870-014-0510-x

[51]. Hutchins, K. M.; Unruh, D. K.; Carpenter, D. D.; Groeneman, R. H. Cryst. Eng. Comm. 2018, 20, 7223-7402.
https://doi.org/10.1039/C8CE01090K

[52]. Hutchins, K. M.; Unruh, D. K.; Verdu, F. A.; Groeneman, R. H. Cryst. Growth. Des. 2018, 18, 566-570.
https://doi.org/10.1021/acs.cgd.7b01386

[53]. Bosch, E.; Bowling, N. P.; Darko, J. Cryst. Growth. Des. 2015, 15, 1634-1641.
https://doi.org/10.1021/cg5014076

[54]. Hutchins, K. M.; Dutta, S.; Loren, B. P.; Macgillivray, L. R. Chem. Mater. 2014, 26, 3042-3044.
https://doi.org/10.1021/cm500823t

[55]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G. J. Chem. Soc. Perkin Trans. II 1987, 12, S1-S19.
https://doi.org/10.1039/p298700000s1

[56]. Mishra, B. K.; Sathyamurthy, N. J. Phys. Chem. A 2005, 109, 6-8.
https://doi.org/10.1021/jp045218c

[57]. Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
https://doi.org/10.1021/j100785a001

[58]. Batsanov, S. S. Inorg. Mater. 2001, 37, 871-885.
https://doi.org/10.1023/A:1011625728803

[59]. Kirchner, M. T.; Boese, R.; Gehrke, A.; Blaser, D. Cryst. Eng. Comm. 2004, 6, 360-366.
https://doi.org/10.1039/B410636A

[60]. Ohkita, M.; Suzuki, T.; Nakatani, K.; Tsuji, T. Chem. Lett. 2001, 30(10), 988-989.
https://doi.org/10.1246/cl.2001.988

[61]. Shivakumar, K.; Vidyasagar, A.; Naidu, A.; Gonnade, R. G. Sureshan, K. M. Cryst. Eng. Comm. 2012, 14, 519-524.
https://doi.org/10.1039/C1CE05997A

Supporting Agencies

Natural Sciences and Engineering Research Council of Canada, University of Lethbridge, Canada, Lagos State University, Nigeria.
TrendMD

Dimensions - Altmetric - scite_ - PlumX
publications
0
supporting
0
mentioning
0
contrasting
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Downloads and views

Downloads

Metrics

PDF views
755
Mar 31 '20Apr 01 '20Apr 04 '20Apr 07 '20Apr 10 '20Apr 13 '20Apr 16 '20Apr 19 '20Apr 22 '20Apr 25 '20Apr 28 '204.0
| |
DataCite
1
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).