European Journal of Chemistry

Sulfonamides and sulfonate esters: Synthetic routes, proposed mechanisms, and crystallographic characterizations

Crossmark


Main Article Content

Brock Anton Stenfors
Felix Nyuangem Ngassa

Abstract

The sulfonamide and sulfonate moieties are key structural features in many pharmaceuticals, agrochemicals, and materials and have proven useful as synthetic precursors. In this review, synthetic routes for sulfonamides and sulfonate esters were examined to gain insight into the mechanism behind the sulfonylation of amines and alcohols, which remains largely unknown and highly dependent on the reaction conditions used. Furthermore, the review delves into crystallographic characterizations of previously reported sulfonamide and sulfonate ester compounds, unraveling trends associated with crucial steric and electronic factors that influence their crystallization. This exploration not only enhances our understanding of the structural nuances of these compounds, but also paves the way for informed design strategies in synthetic and medicinal chemistry. In essence, this review endeavors to provide a holistic perspective on sulfonamides and sulfonate esters, bridging the realms of synthesis, mechanism elucidation, and structural characterization.


icon graph This Abstract was viewed 312 times | icon graph Article PDF downloaded 145 times

How to Cite
(1)
Stenfors, B. A.; Ngassa, F. N. Sulfonamides and Sulfonate Esters: Synthetic Routes, Proposed Mechanisms, and Crystallographic Characterizations. Eur. J. Chem. 2024, 15, 282-290.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Navia, M. A. A chicken in every pot, thanks to sulfonamide drugs. Science 2000, 288, 2132-2133.
https://doi.org/10.1126/science.288.5474.2132

[2]. Palakurthy, N. B.; Mandal, B. Sulfonamide synthesis using N-hydroxybenzotriazole sulfonate: an alternative to pentafluorophenyl (PFP) and trichlorophenyl (TCP) esters of sulfonic acids. Tetrahedron Lett. 2011, 52, 7132-7134.
https://doi.org/10.1016/j.tetlet.2011.10.107

[3]. Miller, S. C. Profiling sulfonate ester stability: Identification of complementary protecting groups for sulfonates. J. Org. Chem. 2010, 75, 4632-4635.
https://doi.org/10.1021/jo1007338

[4]. Crossland, R. K.; Wells, W. E.; Shiner, V. J., Jr Sulfonate leaving groups, structure and reactivity. 2,2,2-Trifluoroethanesulfonate. J. Am. Chem. Soc. 1971, 93, 4217-4219.
https://doi.org/10.1021/ja00746a021

[5]. Morales-Rojas, H.; Moss, R. A. Phosphorolytic reactivity of o-iodosylcarboxylates and related nucleophiles. Chem. Rev. 2002, 102, 2497-2522.
https://doi.org/10.1021/cr9405462

[6]. Um, I.-H.; Kang, J.-S.; Shin, Y.-H.; Buncel, E. A kinetic study on nucleophilic displacement reactions of aryl benzenesulfonates with potassium ethoxide: Role of K+ion and reaction mechanism deduced from analyses of LFERs and activation parameters. J. Org. Chem. 2013, 78, 490-497.
https://doi.org/10.1021/jo302373y

[7]. Pregel, M. J.; Dunn, E. J.; Buncel, E. Metal ion catalysis in nucleophilic displacement reactions at carbon, phosphorus, and sulfur centers. 4. Mechanism of the reaction of aryl benzenesulfonates with alkali-metal ethoxides: catalysis and inhibition by alkali-metal ions. J. Am. Chem. Soc. 1991, 113, 3545-3550.
https://doi.org/10.1021/ja00009a049

[8]. Gelmo, P. Über sulfamide der p‐amidobenzolsulfonsäure. J. Prakt. Chem. 1908, 77, 369-382.
https://doi.org/10.1002/prac.19080770129

[9]. Apaydın, S.; Török, M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg. Med. Chem. Lett. 2019, 29, 2042-2050.
https://doi.org/10.1016/j.bmcl.2019.06.041

[10]. Gul, H. I.; Yamali, C.; Sakagami, H.; Angeli, A.; Leitans, J.; Kazaks, A.; Tars, K.; Ozgun, D. O.; Supuran, C. T. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg. Chem. 2018, 77, 411-419.
https://doi.org/10.1016/j.bioorg.2018.01.021

[11]. Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. Anticancer and antiviral sulfonamides. Curr. Med. Chem. 2003, 10, 925-953.
https://doi.org/10.2174/0929867033457647

[12]. Jin, B.; Guo, K.; Zhang, T.; Li, T.; Ma, C. Simultaneous determination of 15 sulfonate ester impurities in phentolamine mesylate, amlodipine besylate, and tosufloxacin tosylate by LC-APCI-MS/MS. J. Anal. Methods Chem. 2019, 2019, 1-7.
https://doi.org/10.1155/2019/4059765

[13]. Kui, T.; Chardin, C.; Rouden, J.; Livi, S.; Baudoux, J. Sulfonates as versatile structural counterions of epoxidized salts. ChemSusChem 2022, 15, e202200198.
https://doi.org/10.1002/cssc.202200198

[14]. Xie, D.; Hu, X.; Ren, X.; Yang, Z. Synthesis and bioactivities of novel piperonylic acid derivatives containing a sulfonic acid ester moiety. Front. Chem. 2022, 10, 913003.
https://doi.org/10.3389/fchem.2022.913003

[15]. Baunach, M.; Ding, L.; Willing, K.; Hertweck, C. Bacterial synthesis of unusual sulfonamide and sulfone antibiotics by flavoenzyme‐mediated sulfur dioxide capture. Angew. Chem. Int. Ed Engl. 2015, 54, 13279-13283.
https://doi.org/10.1002/anie.201506541

[16]. Roy, T.; Lee, J.-W. Cyanide-mediated synthesis of sulfones and sulfonamides from vinyl sulfones. Synlett 2020, 31, 455-458.
https://doi.org/10.1055/s-0039-1690991

[17]. Awakawa, T.; Barra, L.; Abe, I. Biosynthesis of sulfonamide and sulfamate antibiotics in actinomycete. J. Ind. Microbiol. Biotechnol. 2021, 48.
https://doi.org/10.1093/jimb/kuab001

[18]. Ovung, A.; Bhattacharyya, J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev. 2021, 13, 259-272.
https://doi.org/10.1007/s12551-021-00795-9

[19]. Venkatesan, M.; Fruci, M.; Verellen, L. A.; Skarina, T.; Mesa, N.; Flick, R.; Pham, C.; Mahadevan, R.; Stogios, P. J.; Savchenko, A. Molecular mechanism of plasmid-borne resistance to sulfonamide antibiotics. Nat. Commun. 2023, 14.
https://doi.org/10.1038/s41467-023-39778-7

[20]. Marcotullio, M.; Campagna, V.; Sternativo, S.; Costantino, F.; Curini, M. A new, simple synthesis of N-tosyl pyrrolidines and piperidines. Synthesis (Mass.) 2006, 2006, 2760-2766.
https://doi.org/10.1055/s-2006-942488

[21]. Lei, X.; Jalla, A.; Abou Shama, M.; Stafford, J.; Cao, B. Chromatography-free and Eco-friendly synthesis of aryl tosylates and mesylates. Synthesis (Mass.) 2015, 47, 2578-2585.
https://doi.org/10.1055/s-0034-1378867

[22]. Tian, Z.; Gong, Q.; Huang, T.; Liu, L.; Chen, T. Practical electro-oxidative sulfonylation of phenols with sodium arenesulfinates generating arylsulfonate esters. J. Org. Chem. 2021, 86, 15914-15926.
https://doi.org/10.1021/acs.joc.1c00260

[23]. Jang, D.; Kim, J.-G. Mild and efficient indium metal catalyzed synthesis of sulfonamides and sulfonic esters. Synlett 2007, 2007, 2501-2504.
https://doi.org/10.1055/s-2007-986632

[24]. Caddick, S.; Wilden, J. D.; Judd, D. B. Direct synthesis of sulfonamides and activated sulfonate esters from sulfonic acids. J. Am. Chem. Soc. 2004, 126, 1024-1025.
https://doi.org/10.1021/ja0397658

[25]. King, J. F.; Lam, J. Y. L.; Skonieczny, S. Organic sulfur mechanisms. 35. Mechanisms of hydrolysis and related nucleophilic displacement reactions of alkanesulfonyl chlorides: pH dependence and the mechanism of hydration of sulfenes. J. Am. Chem. Soc. 1992, 114, 1743-1749.
https://doi.org/10.1021/ja00031a032

[26]. Stenfors, B. A.; Staples, R. J.; Biros, S. M.; Ngassa, F. N. Synthesis and Crystallographic Characterization of X-Substituted 2,4-Dinitrophenyl-4′-phenylbenzenesulfonates. Chemistry (Basel) 2020, 2, 591-599.
https://doi.org/10.3390/chemistry2020036

[27]. Stenfors, B. A.; Ngassa, F. N. Crystal structure of 2,4-dinitrophenyl 2,4,6-trimethylbenzenesulfonate. Eur. J. Chem. 2022, 13, 145-150.
https://doi.org/10.5155/eurjchem.13.2.145-150.2279

[28]. Stenfors, B. A.; Ngassa, F. N. The synthesis and crystallographic characterization of 4-methylbenzenesulfonamide derivatives. Eur. J. Chem. 2021, 12, 109-116.
https://doi.org/10.5155/eurjchem.12.2.109-116.2064

[29]. Reddy, M. B. M.; Pasha, M. A. Cs2CO3 catalyzed rapid and efficient conversion of amines into sulfonamides; Alcohols and phenols into sulfonic esters. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 1867-1875.
https://doi.org/10.1080/10426507.2010.544271

[30]. Ngassa, F. N.; Riley, S.; Atanasova, T. P.; Ahmed, A. O.; Kerr, S.; Cooley, T. A.; Dawood, I. A. S.; Austhof, E. R.; Duran, J. R. J.; Franklin, M. Facile synthesis of arylsulfonates from phenol derivatives and sulfonyl chlorides. Trends Org. Chem. 2017, 18, 1.
https://doi.org/10.31300/TOC.18.2017.1-14

[31]. Davies, T. Q.; Tilby, M. J.; Skolc, D.; Hall, A.; Willis, M. C. Primary sulfonamide synthesis using the sulfinylamine reagent N-sulfinyl-O-(tert-butyl)hydroxylamine, t-BuONSO. Org. Lett. 2020, 22, 9495-9499.
https://doi.org/10.1021/acs.orglett.0c03505

[32]. Pedersen, P. S.; Blakemore, D. C.; Chinigo, G. M.; Knauber, T.; MacMillan, D. W. C. One-pot synthesis of sulfonamides from unactivated acids and amines via aromatic decarboxylative halosulfonylation. J. Am. Chem. Soc. 2023, 145, 21189-21196.
https://doi.org/10.1021/jacs.3c08218

[33]. Patoghi, P.; Sadatnabi, A.; Nematollahi, D. A new type of convergent paired electrochemical synthesis of sulfonamides under green and catalyst-free conditions. Sci. Rep. 2023, 13.
https://doi.org/10.1038/s41598-023-44912-y

[34]. Bahrami, K.; Khodaei, M. M.; Abbasi, J. Synthesis of sulfonamides and sulfonic esters via reaction of amines and phenols with thiols using H2O2-POCl3 system. Tetrahedron 2012, 68, 5095-5101.
https://doi.org/10.1016/j.tet.2012.04.040

[35]. Ozaki, T.; Yorimitsu, H.; Perry, G. J. P. Primary sulfonamide functionalization via sulfonyl pyrroles: Seeing the N−Ts bond in a different light. Chemistry 2021, 27, 15387-15391.
https://doi.org/10.1002/chem.202102748

[36]. Searles, S.; Nukina, S. Cleavage and rearrangement of sulfonamides. Chem. Rev. 1959, 59, 1077-1103.
https://doi.org/10.1021/cr50030a004

[37]. Coeffard, V.; Thobie-Gautier, C.; Beaudet, I.; Le Grognec, E.; Quintard, J.-P. Mild electrochemical deprotection of N‐phenylsulfonyl N‐substituted amines derived from (R)‐phenylglycinol. European J. Org. Chem. 2008, 2008, 383-391.
https://doi.org/10.1002/ejoc.200700709

[38]. Javorskis, T.; Orentas, E. Chemoselective deprotection of sulfonamides under acidic conditions: Scope, sulfonyl group migration, and synthetic applications. J. Org. Chem. 2017, 82, 13423-13439.
https://doi.org/10.1021/acs.joc.7b02507

[39]. Stenfors, B. A.; Staples, R. J.; Biros, S. M.; Ngassa, F. N. Crystal structure of 1-[(4-methylbenzene)sulfonyl]pyrrolidine. Acta Crystallogr. E Crystallogr. Commun. 2020, 76, 452-455.
https://doi.org/10.1107/S205698902000208X

[40]. Stenfors, B. A.; Staples, R. J.; Biros, S. M.; Ngassa, F. N. Crystal structure of 4-methyl-N-(4-methylbenzyl)benzenesulfonamide. Acta Crystallogr. E Crystallogr. Commun. 2020, 76, 235-238.
https://doi.org/10.1107/S2056989020000535

[41]. Stenfors, B. A.; Collins, R. C.; Duran, J. R. J.; Staples, R. J.; Biros, S. M.; Ngassa, F. N. Crystal structure of 4-methyl-N-propylbenzene sulfonamide. Acta Crystallogr. E Crystallogr. Commun. 2020, 76, 1070-1074.
https://doi.org/10.1107/S2056989020007756

[42]. Stenfors, B. A.; Staples, R. J.; Biros, S. M.; Ngassa, F. N. Crystal structure ofN,N-diisopropyl-4-methylbenzenesulfonamide. Acta Crystallogr. E Crystallogr. Commun. 2020, 76, 1018-1021.
https://doi.org/10.1107/S2056989020007185

[43]. Stenfors, B. A.; Ngassa, F. N. Synthesis and crystallographic characterization of N-allyl-N-benzyl-4-methylbenzenesulfonamide. Eur. J. Chem. 2020, 11, 245-249.
https://doi.org/10.5155/eurjchem.11.3.245-249.2017

[44]. Ngassa, F. N.; Biros, S. M.; Staples, R. J. Crystal structure ofN-[(1S,2S)-2-aminocyclohexyl]-2,4,6-trimethylbenzenesulfonamide. Acta Crystallogr. E Crystallogr. Commun. 2015, 71, 1521-1524.
https://doi.org/10.1107/S205698901502191X

[45]. Patel, Z. S.; Stevens, A. C.; Bookout, E. C.; Staples, R. J.; Biros, S. M.; Ngassa, F. N. Crystal structure of N-allyl-4-methylbenzene sulfonamide. Acta Crystallogr. E Crystallogr. Commun. 2018, 74, 1126-1129.
https://doi.org/10.1107/S2056989018010290

[46]. Atanasova, T. P.; Riley, S.; Biros, S. M.; Staples, R. J.; Ngassa, F. N. Crystal structure of 3,5-dimethylphenyl 2-nitrobenzenesulfonate. Acta Crystallogr. E Crystallogr. Commun. 2015, 71, 1045-1047.
https://doi.org/10.1107/S2056989015015078

[47]. Riley, S.; Staples, R. J.; Biros, S. M.; Ngassa, F. N. Crystal structure of phenyl 2,4,5-trichlorobenzenesulfonate. Acta Crystallogr. E Crystallogr. Commun. 2016, 72, 789-792.
https://doi.org/10.1107/S2056989016007325

[48]. Cooley, T. A.; Riley, S.; Biros, S. M.; Staples, R. J.; Ngassa, F. N. Crystal structure of 2,4-dinitrophenyl 4-methylbenzenesulfonate: a new polymorph. Acta Crystallogr. E Crystallogr. Commun. 2015, 71, 1085-1088.
https://doi.org/10.1107/S2056989015015650

[49]. Brameld, K. A.; Kuhn, B.; Reuter, D. C.; Stahl, M. Small molecule conformational preferences derived from crystal structure data. A medicinal chemistry focused analysis. J. Chem. Inf. Model. 2008, 48, 1-24.
https://doi.org/10.1021/ci7002494

[50]. Hu, Z.-Q.; Chen, C.-F. A novel self-assembled organic tubular structure. Chem. Commun. (Camb.) 2005, 2445-2447.
https://doi.org/10.1039/b501941a

[51]. Yang, L.; Powell, D. R.; Houser, R. P. Structural variation in copper(i) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 955-964.
https://doi.org/10.1039/B617136B

[52]. Menziani, M. C.; Cocchi, M.; De Benedetti, P. G. Electronic and electrostatic aspects of carbonic anhydrase inhibition by sulphonamides. Theochem 1992, 256, 217-229.
https://doi.org/10.1016/0166-1280(92)87168-Y

[53]. Perlovich, G. L.; Ryzhakov, A. M.; Tkachev, V. V.; Hansen, L. K.; Raevsky, O. A. Sulfonamide molecular crystals: Structure, sublimation thermodynamic characteristics, molecular packing, hydrogen bonds networks. Cryst. Growth Des. 2013, 13, 4002-4016.
https://doi.org/10.1021/cg400666v

[54]. Adsmond, D. A.; Grant, D. J. W. Hydrogen bonding in sulfonamides. J. Pharm. Sci. 2001, 90, 2058-2077.
https://doi.org/10.1002/jps.1157

[55]. Blatova, O. A.; Asiri, A. M.; Al-amshany, Z. M.; Arshad, M. N.; Blatov, V. A. Molecular packings and specific-bonding patterns in sulfonamides. New J Chem 2014, 38, 4099-4106.
https://doi.org/10.1039/C4NJ00392F

[56]. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171-179.
https://doi.org/10.1107/S2052520616003954

[57]. Teasdale, A.; Delaney, E. J.; Eyley, S. C.; Jacq, K.; Taylor-Worth, K.; Lipczynski, A.; Hoffmann, W.; Reif, V.; Elder, D. P.; Facchine, K. L.; Golec, S.; Schulte Oestrich, R.; Sandra, P.; David, F. A detailed study of sulfonate ester formation and solvolysis reaction rates and application toward establishing sulfonate ester control in pharmaceutical manufacturing processes. Org. Process Res. Dev. 2010, 14, 999-1007.
https://doi.org/10.1021/op900301n

[58]. Ghazzali, M.; Khattab, S. A. N.; Elnakady, Y. A.; Al-Mekhlafi, F. A.; Al-Farhan, K.; El-Faham, A. Synthesis, structure, theoretical calculations and biological activity of sulfonate active ester new derivatives. J. Mol. Struct. 2013, 1046, 147-152.
https://doi.org/10.1016/j.molstruc.2013.04.025

[59]. Stang, P. J.; Crittell, C. M.; Arif, A. M.; Karni, M.; Apeloig, Y. ChemInform Abstract: Single‐crystal molecular structure determinations and theoretical calculations on alkynyl sulfonate and carboxylate esters. ChemInform 1992, 23.
https://doi.org/10.1002/chin.199201047

Supporting Agencies

National Science Foundation (Grant No. MRI CHE-1725699); Grand Valley State University Chemistry Department’s Weldon Fund.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).