European Journal of Chemistry

Crystal structure of 2,4-dinitrophenyl 2,4,6-trimethylbenzenesulfonate

Crossmark


Main Article Content

Brock Anton Stenfors
Felix Nyuangem Ngassa

Abstract

Arylsulfonates are a useful class of synthetic precursors, affording either their arylamine or arylsulfonamide counterparts upon amination via regioselective C–O/S–O bond cleavage. Herein, the synthesis of 2,4-dinitrophenyl 2,4,6-trimethylbenzenesulfonate is described, utilizing our previously developed synthetic methods, and crystallographic characterization. While the mechanism for nucleophilic substitution at the sulfonyl group remains largely unknown, experimental work within our group and in the literature lend credence to a mechanism analogous to its carbonyl counterpart. Characterization of the molecular structure of the title compound, C15H14N2O7S, at 173 K, features a sulfonate group with S=O bond lengths of 1.4198(19) and 1.4183(19) Å and a S–O bond length of 1.6387(18) Å. Viewing down the S–O bond reveals gauche oriented aromatic rings. Crystal data for C15H14N2O7S: Monoclinic, space group P21/c (no. 14), a = 6.8773(10) Å, b = 8.9070(14) Å, c = 25.557(4) Å, β = 93.0630(18)°, V = 1563.3(4) Å3, Z = 4, T = 173.15 K, μ(MoKα) = 0.251 mm-1, Dcalc = 1.557 g/cm3, 12259 reflections measured (3.192° ≤ 2Θ ≤ 50.682°), 2861 unique (Rint = 0.0493, Rsigma = 0.0419) which were used in all calculations. The final R1 was 0.0457 (I > 2σ(I)) and wR2 was 0.1306 (all data).


icon graph This Abstract was viewed 543 times | icon graph Article PDF downloaded 395 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Stenfors, B. A.; Ngassa, F. N. Crystal Structure of 2,4-Dinitrophenyl 2,4,6-Trimethylbenzenesulfonate. Eur. J. Chem. 2022, 13, 145-150.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Miller, S. C. Profiling sulfonate ester stability: identification of complementary protecting groups for sulfonates. J. Org. Chem. 2010, 75, 4632-4635.
https://doi.org/10.1021/jo1007338

[2]. Crossland, R. K.; Wells, W. E.; Shiner, V. J., Jr Sulfonate leaving groups, structure and reactivity. 2,2,2-Trifluoroethanesulfonate. J. Am. Chem. Soc. 1971, 93, 4217-4219.
https://doi.org/10.1021/ja00746a021

[3]. El-Gamal, M. I.; Semreen, M. H.; Foster, P. A.; Potter, B. V. L. Design, synthesis, and biological evaluation of new arylamide derivatives possessing sulfonate or sulfamate moieties as steroid sulfatase enzyme inhibitors. Bioorg. Med. Chem. 2016, 24, 2762-2767.
https://doi.org/10.1016/j.bmc.2016.04.040

[4]. Fortin, S.; Wei, L.; Moreau, E.; Lacroix, J.; Côté, M.-F.; Petitclerc, E.; Kotra, L. P.; C-Gaudreault, R. Design, synthesis, biological evaluation, and structure-activity relationships of substituted phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates as new tubulin inhibitors mimicking combretastatin A-4. J. Med. Chem. 2011, 54, 4559-4580.
https://doi.org/10.1021/jm200488a

[5]. Castro, E. A.; Andújar, M.; Toro, A.; Santos, J. G. Kinetics and mechanism of the aminolysis of 4-methylphenyl and 4-chlorophenyl 4-nitrophenyl carbonates in aqueous ethanol. J. Org. Chem. 2003, 68, 3608-3613.
https://doi.org/10.1021/jo034008d

[6]. Terrier, F.; Le Guével, E.; Chatrousse, A. P.; Moutiers, G.; Buncel, E. The levelling effect of solvational imbalances in the reactions of oximate α-nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of organophosphorus esters. Chem. Commun. (Camb.) 2003, 600-601.
https://doi.org/10.1039/b212160n

[7]. Um, I.-H.; Chun, S.-M.; Chae, O.-M.; Fujio, M.; Tsuno, Y. Effect of amine nature on reaction rate and mechanism in nucleophilic substitution reactions of 2,4-dinitrophenyl X-substituted benzenesulfonates with alicyclic secondary amines. J. Org. Chem. 2004, 69, 3166-3172.
https://doi.org/10.1021/jo049812u

[8]. Qrareya, H.; Protti, S.; Fagnoni, M. Aryl imidazylates and aryl sulfates as electrophiles in metal-free ArS(N)1 reactions. J. Org. Chem. 2014, 79, 11527-11533.
https://doi.org/10.1021/jo502172c

[9]. Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. Structure-reactivity correlations for reactions of substituted phenolate anions with acetate and formate esters. J. Am. Chem. Soc. 1993, 115, 1650-1656.
https://doi.org/10.1021/ja00058a006

[10]. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. Transition-state variation in the nucleophilic substitution reactions of aryl bis(4-methoxyphenyl) phosphates with pyridines in acetonitrile. J. Org. Chem. 2002, 67, 2215-2222.
https://doi.org/10.1021/jo0162742

[11]. Ratushnyy, M.; Kamenova, M.; Gevorgyan, V. A mild light-induced cleavage of the S-O bond of aryl sulfonate esters enables efficient sulfonylation of vinylarenes. Chem. Sci. 2018, 9, 7193-7197.
https://doi.org/10.1039/C8SC02769B

[12]. Atanasova, T. P.; Riley, S.; Biros, S. M.; Staples, R. J.; Ngassa, F. N. Crystal structure of 3,5-di-methyl-phenyl 2-nitro-benzene-sulfonate. Acta Crystallogr. E Crystallogr. Commun. 2015, 71, 1045-1047.
https://doi.org/10.1107/S2056989015015078

[13]. Riley, S.; Staples, R. J.; Biros, S. M.; Ngassa, F. N. Crystal structure of phenyl 2,4,5-tri-chloro-benzene-sulfonate. Acta Crystallogr. E Crystallogr. Commun. 2016, 72, 789-792.
https://doi.org/10.1107/S2056989016007325

[14]. Supuran, C. T.; Casini, A.; Scozzafava, A. Protease inhibitors of the sulfonamide type: anticancer, antiinflammatory, and antiviral agents. Med. Res. Rev. 2003, 23, 535-558.
https://doi.org/10.1002/med.10047

[15]. Mirza, A.; Desai, R.; Reynisson, J. Known drug space as a metric in exploring the boundaries of drug-like chemical space. Eur. J. Med. Chem. 2009, 44, 5006-5011.
https://doi.org/10.1016/j.ejmech.2009.08.014

[16]. Willcott, M. R. MestRe Nova. J. Am. Chem. Soc. 2009, 131, 13180-13180.
https://doi.org/10.1021/ja906709t

[17]. Bruker (2013). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

[18]. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

[19]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[20]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[21]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726

[22]. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environ-ment - Olex2 dissected. Acta Crystallogr. A Found. Adv. 2015, 71, 59-75.
https://doi.org/10.1107/S2053273314022207

[23]. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226-235.
https://doi.org/10.1107/S1600576719014092

[24]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0- new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[25]. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453-457.
https://doi.org/10.1107/S002188980600731X

[26]. Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae, C. F.; McCabe, P.; Pearson, J.; Taylor, R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr. B 2002, 58, 389-397.
https://doi.org/10.1107/S0108768102003324

[27]. Taylor, R.; Macrae, C. F. Rules governing the crystal packing of mono- and dialcohols. Acta Crystallogr. B 2001, 57, 815-827.
https://doi.org/10.1107/S010876810101360X

[28]. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3-10.
https://doi.org/10.1107/S1600576714022985

[29]. Yang, L.; Powell, D. R.; Houser, R. P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, tau4. Dalton Trans. 2007, 955-964.
https://doi.org/10.1039/B617136B

[30]. Stenfors, B. A.; Staples, R. J.; Biros, S. M.; Ngassa, F. N. Synthesis and Crystallographic Characterization of X-Substituted 2,4-Dinitrophenyl-4′-phenylbenzenesulfonates. Chemistry 2020, 2, 591-599.
https://doi.org/10.3390/chemistry2020036

[31]. Um, I.-H.; Kang, J.-S.; Shin, Y.-H.; Buncel, E. A kinetic study on nucleophilic displacement reactions of aryl benzenesulfonates with potassium ethoxide: role of K+ ion and reaction mechanism deduced from analyses of LFERs and activation parameters. J. Org. Chem. 2013, 78, 490-497.
https://doi.org/10.1021/jo302373y

Supporting Agencies

National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. MRI CHE-1725699, grant No. MRI CHE-1919817), GVSU Chemistry Department’s Weldon Fund.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).