European Journal of Chemistry 2022, 13(2), 145-150 | doi: | Get rights and content

Issue cover



Crystal structure of 2,4-dinitrophenyl 2,4,6-trimethylbenzenesulfonate

Brock Anton Stenfors (1) orcid , Felix Nyuangem Ngassa (2,*) orcid

(1) Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, MI 49401, USA
(2) Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, MI 49401, USA
(*) Corresponding Author

Received: 06 Apr 2022 | Revised: 12 Apr 2022 | Accepted: 27 Apr 2022 | Published: 30 Jun 2022 | Issue Date: June 2022


Arylsulfonates are a useful class of synthetic precursors, affording either their arylamine or arylsulfonamide counterparts upon amination via regioselective C–O/S–O bond cleavage. Herein, the synthesis of 2,4-dinitrophenyl 2,4,6-trimethylbenzenesulfonate is described, utilizing our previously developed synthetic methods, and crystallographic characterization. While the mechanism for nucleophilic substitution at the sulfonyl group remains largely unknown, experimental work within our group and in the literature lend credence to a mechanism analogous to its carbonyl counterpart. Characterization of the molecular structure of the title compound, C15H14N2O7S, at 173 K, features a sulfonate group with S=O bond lengths of 1.4198(19) and 1.4183(19) Å and a S–O bond length of 1.6387(18) Å. Viewing down the S–O bond reveals gauche oriented aromatic rings. Crystal data for C15H14N2O7S: Monoclinic, space group P21/c (no. 14), a = 6.8773(10) Å, b = 8.9070(14) Å, c = 25.557(4) Å, β = 93.0630(18)°, V = 1563.3(4) Å3, Z = 4, T = 173.15 K, μ(MoKα) = 0.251 mm-1, Dcalc = 1.557 g/cm3, 12259 reflections measured (3.192° ≤ 2Θ ≤ 50.682°), 2861 unique (Rint = 0.0493, Rsigma = 0.0419) which were used in all calculations. The final R1 was 0.0457 (I > 2σ(I)) and wR2 was 0.1306 (all data).


Crystal; Sulfonate; Sulfonylation; Crystallization; X-ray diffraction; Synthetic methods

Full Text:

PDF    Open Access

DOI: 10.5155/eurjchem.13.2.145-150.2279

Links for Article

| | | | | | |

| | | | | | |

| | | |

Related Articles

Article Metrics

icon graph This Abstract was viewed 119 times | icon graph PDF Article downloaded 38 times

Funding information

National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. MRI CHE-1725699; grant No. MRI CHE-1919817); GVSU Chemistry Department’s Weldon Fund.


[1]. Miller, S. C. Profiling sulfonate ester stability: identification of complementary protecting groups for sulfonates. J. Org. Chem. 2010, 75, 4632-4635.

[2]. Crossland, R. K.; Wells, W. E.; Shiner, V. J., Jr Sulfonate leaving groups, structure and reactivity. 2,2,2-Trifluoroethanesulfonate. J. Am. Chem. Soc. 1971, 93, 4217-4219.

[3]. El-Gamal, M. I.; Semreen, M. H.; Foster, P. A.; Potter, B. V. L. Design, synthesis, and biological evaluation of new arylamide derivatives possessing sulfonate or sulfamate moieties as steroid sulfatase enzyme inhibitors. Bioorg. Med. Chem. 2016, 24, 2762-2767.

[4]. Fortin, S.; Wei, L.; Moreau, E.; Lacroix, J.; Côté, M.-F.; Petitclerc, E.; Kotra, L. P.; C-Gaudreault, R. Design, synthesis, biological evaluation, and structure-activity relationships of substituted phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates as new tubulin inhibitors mimicking combretastatin A-4. J. Med. Chem. 2011, 54, 4559-4580.

[5]. Castro, E. A.; Andújar, M.; Toro, A.; Santos, J. G. Kinetics and mechanism of the aminolysis of 4-methylphenyl and 4-chlorophenyl 4-nitrophenyl carbonates in aqueous ethanol. J. Org. Chem. 2003, 68, 3608-3613.

[6]. Terrier, F.; Le Guével, E.; Chatrousse, A. P.; Moutiers, G.; Buncel, E. The levelling effect of solvational imbalances in the reactions of oximate α-nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of organophosphorus esters. Chem. Commun. (Camb.) 2003, 600-601.

[7]. Um, I.-H.; Chun, S.-M.; Chae, O.-M.; Fujio, M.; Tsuno, Y. Effect of amine nature on reaction rate and mechanism in nucleophilic substitution reactions of 2,4-dinitrophenyl X-substituted benzenesulfonates with alicyclic secondary amines. J. Org. Chem. 2004, 69, 3166-3172.

[8]. Qrareya, H.; Protti, S.; Fagnoni, M. Aryl imidazylates and aryl sulfates as electrophiles in metal-free ArS(N)1 reactions. J. Org. Chem. 2014, 79, 11527-11533.

[9]. Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. Structure-reactivity correlations for reactions of substituted phenolate anions with acetate and formate esters. J. Am. Chem. Soc. 1993, 115, 1650-1656.

[10]. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. Transition-state variation in the nucleophilic substitution reactions of aryl bis(4-methoxyphenyl) phosphates with pyridines in acetonitrile. J. Org. Chem. 2002, 67, 2215-2222.

[11]. Ratushnyy, M.; Kamenova, M.; Gevorgyan, V. A mild light-induced cleavage of the S-O bond of aryl sulfonate esters enables efficient sulfonylation of vinylarenes. Chem. Sci. 2018, 9, 7193-7197.

[12]. Atanasova, T. P.; Riley, S.; Biros, S. M.; Staples, R. J.; Ngassa, F. N. Crystal structure of 3,5-di-methyl-phenyl 2-nitro-benzene-sulfonate. Acta Crystallogr. E Crystallogr. Commun. 2015, 71, 1045-1047.

[13]. Riley, S.; Staples, R. J.; Biros, S. M.; Ngassa, F. N. Crystal structure of phenyl 2,4,5-tri-chloro-benzene-sulfonate. Acta Crystallogr. E Crystallogr. Commun. 2016, 72, 789-792.

[14]. Supuran, C. T.; Casini, A.; Scozzafava, A. Protease inhibitors of the sulfonamide type: anticancer, antiinflammatory, and antiviral agents. Med. Res. Rev. 2003, 23, 535-558.

[15]. Mirza, A.; Desai, R.; Reynisson, J. Known drug space as a metric in exploring the boundaries of drug-like chemical space. Eur. J. Med. Chem. 2009, 44, 5006-5011.

[16]. Willcott, M. R. MestRe Nova. J. Am. Chem. Soc. 2009, 131, 13180-13180.

[17]. Bruker (2013). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

[18]. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

[19]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.

[20]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.

[21]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.

[22]. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environ-ment - Olex2 dissected. Acta Crystallogr. A Found. Adv. 2015, 71, 59-75.

[23]. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226-235.

[24]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0- new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466-470.

[25]. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453-457.

[26]. Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae, C. F.; McCabe, P.; Pearson, J.; Taylor, R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr. B 2002, 58, 389-397.

[27]. Taylor, R.; Macrae, C. F. Rules governing the crystal packing of mono- and dialcohols. Acta Crystallogr. B 2001, 57, 815-827.

[28]. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3-10.

[29]. Yang, L.; Powell, D. R.; Houser, R. P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, tau4. Dalton Trans. 2007, 955-964.

[30]. Stenfors, B. A.; Staples, R. J.; Biros, S. M.; Ngassa, F. N. Synthesis and Crystallographic Characterization of X-Substituted 2,4-Dinitrophenyl-4′-phenylbenzenesulfonates. Chemistry 2020, 2, 591-599.

[31]. Um, I.-H.; Kang, J.-S.; Shin, Y.-H.; Buncel, E. A kinetic study on nucleophilic displacement reactions of aryl benzenesulfonates with potassium ethoxide: role of K+ ion and reaction mechanism deduced from analyses of LFERs and activation parameters. J. Org. Chem. 2013, 78, 490-497.

Supporting information

The Supplementary Material for this article can be found online at: Supplementary files

How to cite

Stenfors, B.; Ngassa, F. Eur. J. Chem. 2022, 13(2), 145-150. doi:10.5155/eurjchem.13.2.145-150.2279
Stenfors, B.; Ngassa, F. Crystal structure of 2,4-dinitrophenyl 2,4,6-trimethylbenzenesulfonate. Eur. J. Chem. 2022, 13(2), 145-150. doi:10.5155/eurjchem.13.2.145-150.2279
Stenfors, B., & Ngassa, F. (2022). Crystal structure of 2,4-dinitrophenyl 2,4,6-trimethylbenzenesulfonate. European Journal of Chemistry, 13(2), 145-150. doi:10.5155/eurjchem.13.2.145-150.2279
Stenfors, Brock, & Felix Nyuangem Ngassa. "Crystal structure of 2,4-dinitrophenyl 2,4,6-trimethylbenzenesulfonate." European Journal of Chemistry [Online], 13.2 (2022): 145-150. Web. 19 Aug. 2022
Stenfors, Brock, AND Ngassa, Felix. "Crystal structure of 2,4-dinitrophenyl 2,4,6-trimethylbenzenesulfonate" European Journal of Chemistry [Online], Volume 13 Number 2 (30 June 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley

European Journal of Chemistry 2022, 13(2), 145-150 | doi: | Get rights and content


  • There are currently no refbacks.

Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.