European Journal of Chemistry

Current advancements in CO2 capture using graphene-based materials

Crossmark


Main Article Content

Madushan Dhammika Gunarathna
Nimeshi Aviddika Abeysinghe
Ashan Sithija Wickramaarachchi
Polegodage Dilushi Sureka Ruwan Kumari

Abstract

In 2023, global CO2 emissions were 37.4 billion tonnes and a 1.1% increase compared to 2022. Although most countries try to decarbonize their economies, oil and gas supplied 52% of the world's energy needs in 2021, and by 2050 it will be 47%. Therefore, in the future, oil and gas will still account for a considerable percentage of the energy sector. However, the continuous release of CO2 into the atmosphere at this rate can result in severe environmental problems. One of the promising approaches to address this issue is CO2 capture. This captured CO2 can then be stored underground or used to produce commercially valuable products. In recent years, graphene-based materials have gained attention in CO2 capture due to their interesting properties, such as high thermal stability and durability. This review focuses mainly on recently published articles on carbon capture using graphene-based materials.


icon graph This Abstract was viewed 8 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
Gunarathna, M. D.; Abeysinghe, N. A.; Wickramaarachchi, A. S.; Kumari, P. D. S. R. Current Advancements in CO2 Capture Using Graphene-Based Materials. Eur. J. Chem. 2024, 15, 302-306.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Kharisov, B. I.; Kharissova, O. V. Carbon allotropes: Metal-complex chemistry, properties and applications; 1st ed.; Springer International Publishing: Basel, Switzerland, 2019.
https://doi.org/10.1007/978-3-030-03505-1_1

[2]. Synthesis and applications of nanocarbons; Arnault, J.-C.; Eder, D., Eds.; John Wiley & Sons: Nashville, TN, 2020.

[3]. Okwundu, O. S.; Aniekwe, E. U.; Nwanno, C. E. Unlimited potentials of carbon: different structures and uses (a Review). Met. Mater. Eng. 2018, 24, 145-171.
https://doi.org/10.30544/388

[4]. Liu, Z.; Zhou, X. Graphene: Energy storage and conversion applications; CRC Press: London, England, 2021.

[5]. Sang, M.; Shin, J.; Kim, K.; Yu, K. J. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials (Basel) 2019, 9, 374.
https://doi.org/10.3390/nano9030374

[6]. Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Muñoz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J.-C. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 2010, 5, 351-372.
https://doi.org/10.1016/j.nantod.2010.06.010

[7]. Zhang, L.; Deng, K.-K.; Nie, K.-B.; Wang, C.-J.; Xu, C.; Shi, Q.-X.; Liu, Y.; Wang, J. Thermal conductivity and mechanical properties of graphite/Mg composite with a super-nano CaCO3 interfacial layer. iScience 2023, 26, 106505.
https://doi.org/10.1016/j.isci.2023.106505

[8]. Chin, B. L. F.; Loy, A. C. M.; Cheah, K. W.; Chan, Y. H.; Lock, S. S. M.; Yiin, C. L. Graphene-based nanomaterials for CO2 capture and conversion. In Nanomaterials for Carbon Dioxide Capture and Conversion Technologies; Elsevier, 2023; pp. 211-243.
https://doi.org/10.1016/B978-0-323-89851-5.00011-1

[9]. Chowdhury, S.; Balasubramanian, R. Highly efficient, rapid and selective CO2 capture by thermally treated graphene nanosheets. J. CO2 Util. 2016, 13, 50-60.
https://doi.org/10.1016/j.jcou.2015.12.001

[10]. Dziejarski, B.; Serafin, J.; Andersson, K.; Krzyżyńska, R. CO2 capture materials: a review of current trends and future challenges. Materials Today Sustainability 2023, 24, 100483.
https://doi.org/10.1016/j.mtsust.2023.100483

[11]. Ozkan, M.; Custelcean, R.; Editors, G. The status and prospects of materials for carbon capture technologies. MRS Bull. 2022, 47, 390-394.
https://doi.org/10.1557/s43577-022-00364-9

[12]. Makertihartha, I. G. B. N.; Dharmawijaya, P. T.; Zunita, M.; Wenten, I. G. Post combustion CO2 capture using zeolite membrane. In AIP Conference Proceedings; Author(s), 2017.
https://doi.org/10.1063/1.4979941

[13]. Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426-443.
https://doi.org/10.1016/j.rser.2014.07.093

[14]. Luis, P. Use of monoethanolamine (MEA) for CO 2 capture in a global scenario: Consequences and alternatives. Desalination 2016, 380, 93-99.
https://doi.org/10.1016/j.desal.2015.08.004

[15]. Bae, J.; Chung, Y.; Lee, J.; Seo, H. Knowledge spillover efficiency of carbon capture, utilization, and storage technology: A comparison among countries. J. Clean. Prod. 2020, 246, 119003.
https://doi.org/10.1016/j.jclepro.2019.119003

[16]. Hasan, S.; Abbas, A. J.; Nasr, G. G. Improving the carbon capture efficiency for gas power plants through Amine-based absorbents. Sustainability 2020, 13, 72.
https://doi.org/10.3390/su13010072

[17]. Ikram, R.; Jan, B. M.; Ahmad, W. Advances in synthesis of graphene derivatives using industrial wastes precursors; prospects and challenges. J. Mater. Res. Technol. 2020, 9, 15924-15951.
https://doi.org/10.1016/j.jmrt.2020.11.043

[18]. Moosa, A. A.; Abed, M. S. Graphene preparation and graphite exfoliation. Turk. J. Chem. 2021, 45, 493-519.
https://doi.org/10.3906/kim-2101-19

[19]. Paramasivan, T.; Sivarajasekar, N.; Muthusaravanan, S.; Subashini, R.; Prakashmaran, J.; Sivamani, S.; Ajmal Koya, P. Graphene family materials for the removal of pesticides from water. In A New Generation Material Graphene: Applications in Water Technology; Springer International Publishing: Cham, 2019; pp. 309-327.
https://doi.org/10.1007/978-3-319-75484-0_13

[20]. Neklyudov, V. V.; Khafizov, N. R.; Sedov, I. A.; Dimiev, A. M. New insights into the solubility of graphene oxide in water and alcohols. Phys. Chem. Chem. Phys. 2017, 19, 17000-17008.
https://doi.org/10.1039/C7CP02303K

[21]. Habte, A. T.; Ayele, D. W. Synthesis and characterization of reduced graphene oxide (rGO) started from graphene oxide (GO) using the tour method with different parameters. Adv. Mater. Sci. Eng. 2019, 2019, 1-9.
https://doi.org/10.1155/2019/5058163

[22]. Banendu Sunder, D.; Gils, J.; Yu-Jen, L.; Jyh-Ping, C. Functionalized reduced graphene oxide as a versatile tool for cancer therapy. Int. J. Mol. Sci. 2021, 22, 2989.
https://doi.org/10.3390/ijms22062989

[23]. Yokwana, K.; Ntsendwana, B.; Nxumalo, E. N.; Mhlanga, S. D. Recent advances in nitrogen-doped graphene oxide nanomaterials: Synthesis and applications in energy storage, sensor electrochemical applications and water treatment. J. Mater. Res. 2023, 38, 3239-3263.
https://doi.org/10.1557/s43578-023-01070-1

[24]. An, L.; Liu, S.; Wang, L.; Wu, J.; Wu, Z.; Ma, C.; Yu, Q.; Hu, X. Novel nitrogen-doped porous carbons derived from graphene for effective CO2 capture. Ind. Eng. Chem. Res. 2019, 58, 3349-3358.
https://doi.org/10.1021/acs.iecr.8b06122

[25]. Raymundo-Piñero, E.; Azaïs, P.; Cacciaguerra, T.; Cazorla-Amorós, D.; Linares-Solano, A.; Béguin, F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon N. Y. 2005, 43, 786-795.
https://doi.org/10.1016/j.carbon.2004.11.005

[26]. Harimisa, G. E.; Jusoh, N. W. C.; Tan, L. S.; Shameli, K.; Ghafar, N. A.; Masudi, A. Synthesis of potassium hydroxide-treated activated carbon via one-step activation method. J. Phys. Conf. Ser. 2022, 2259, 012009.
https://doi.org/10.1088/1742-6596/2259/1/012009

[27]. Storck, S.; Bretinger, H.; Maier, W. F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A Gen. 1998, 174, 137-146.
https://doi.org/10.1016/S0926-860X(98)00164-1

[28]. Lapham, D. P.; Lapham, J. L. Gas adsorption on commercial magnesium stearate: Effects of degassing conditions on nitrogen BET surface area and isotherm characteristics. Int. J. Pharm. 2017, 530, 364-376.
https://doi.org/10.1016/j.ijpharm.2017.08.003

[29]. Marsh, H. Adsorption methods to study microporosity in coals and carbons-a critique. Carbon N. Y. 1987, 25, 49-58.
https://doi.org/10.1016/0008-6223(87)90039-X

[30]. Dollimore, D.; Spooner, P.; Turner, A. The bet method of analysis of gas adsorption data and its relevance to the calculation of surface areas. Surf. Technol. 1976, 4, 121-160.
https://doi.org/10.1016/0376-4583(76)90024-8

[31]. Politakos, N.; Barbarin, I.; Cantador, L. S.; Cecilia, J. A.; Mehravar, E.; Tomovska, R. Graphene-based monolithic nanostructures for CO2 capture. Ind. Eng. Chem. Res. 2020, 59, 8612-8621.
https://doi.org/10.1021/acs.iecr.9b06998

[32]. Govender, S.; Friedrich, H. Monoliths: A review of the basics, preparation methods and their relevance to oxidation. Catalysts 2017, 7, 62.
https://doi.org/10.3390/catal7020062

[33]. Chowdhury, S.; Balasubramanian, R. Three-dimensional graphene-based porous adsorbents for postcombustion CO2 capture. Ind. Eng. Chem. Res. 2016, 55, 7906-7916.
https://doi.org/10.1021/acs.iecr.5b04052

[34]. Guan, C.; Liu, S.; Li, C.; Wang, Y.; Zhao, Y. The temperature effect on the methane and CO2 adsorption capacities of Illinois coal. Fuel (Lond.) 2018, 211, 241-250.
https://doi.org/10.1016/j.fuel.2017.09.046

[35]. Saffarionpour, S.; Tam, S.-Y. S.; Van der Wielen, L. A. M.; Brouwer, E.; Ottens, M. Influence of ethanol and temperature on adsorption of flavor-active esters on hydrophobic resins. Sep. Purif. Technol. 2019, 210, 219-230.
https://doi.org/10.1016/j.seppur.2018.05.026

[36]. Zhao, Y.; Feng, D.; Li, B.; Wang, P.; Tan, H.; Sun, S. Effects of flue gases (CO/CO2/SO2/H2O/O2) on NO-Char interaction at high temperatures. Energy (Oxf.) 2019, 174, 519-525.
https://doi.org/10.1016/j.energy.2019.02.156

Supporting Agencies

University of Kelaniya, Kelaniya, 11300, Sri Lanka
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).