European Journal of Chemistry

Zinc oxide-catalyzed UV-photodegradation of cyhalothrin: A kinetic analysis

Crossmark


Main Article Content

Seth Otieno Osumba
John Onyango Adongo
Josiah Ouma Omolo

Abstract

In this study, we present kinetic studies of the photodegradation of cyhalothrin (CyH) under ultraviolet (UV) irradiation and the photocatalytic activity of zinc oxide (ZnO) in UV-assisted photodegradation. CyH in an acetone solvent was periodically exposed to UV254 nm radiation light with a surface power density of 48 W/cm2. The photodegradation experiments were conducted by acquiring periodic wavelength-scan spectroscopic data using a double beam ultraviolet-visible (UV-vis) spectrophotometer and plotting the real-time absorbance data to monitor the reaction coordinate. Under our optimized conditions at room temperature of 26.5 °C, atmospheric pressure of 76.6 mmHg, CyH (5.0 ppm) in the 70% acetone solvent with pH = 6.8 and dose of ZnO (25 ppm) exhibited typical photodegradation efficiencies between 81.9 and 90.3 % within the first 1,200 seconds of UV irradiation. Spectroscopic data showed that the ZnO solution significantly elevated the UV-assisted photodegradation rate of CyH by about 7.03 - 7.18 times more than that of UV-only-mediated CyH photodegradation. The result confirmed and characterized the photocatalytic activity of ZnO. Under the optimized measurement conditions, the rate of the ZnO-catalyzed photodegradation of CyH was found to follow the first-order rate law (RSq. = 0.999).


icon graph This Abstract was viewed 255 times | icon graph Article PDF downloaded 72 times

How to Cite
(1)
Osumba, S. O.; Adongo, J. O.; Omolo, J. O. Zinc Oxide-Catalyzed UV-Photodegradation of Cyhalothrin: A Kinetic Analysis. Eur. J. Chem. 2025, 16, 20-26.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Fetoui, H.; Makni, M.; Mouldi Garoui, E.; Zeghal, N. Toxic effects of lambda-cyhalothrin, a synthetic pyrethroid pesticide, on the rat kidney: Involvement of oxidative stress and protective role of ascorbic acid. Exp. Toxicol. Pathol. 2010, 62 (6), 593-599.
https://doi.org/10.1016/j.etp.2009.08.004

[2]. Tang, F. H.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14 (4), 206-210.
https://doi.org/10.1038/s41561-021-00712-5

[3]. Alengebawy, A.; Abdelkhalek, S. T.; Qureshi, S. R.; Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics. 2021, 9, 42.
https://doi.org/10.3390/toxics9030042

[4]. Saillenfait, A.-M.; Ndiaye, D.; Sabaté, J.-P. Pyrethroids: Exposure and health effects - An update. Int. J. Hyg. Environ. Health 2015, 218, 281-292.
https://doi.org/10.1016/j.ijheh.2015.01.002

[5]. Abdelkader, A. A.; Khalil, M. S.; Mohamed, M. S. Simultaneous biodegradation of λ-cyhalothrin pesticide and Vicia faba growth promotion under greenhouse conditions. AMB. Expr. 2022, 12 (1).
https://doi.org/10.1186/s13568-022-01383-0

[6]. Bustos, N.; Cruz-Alcalde, A.; Iriel, A.; Fernández Cirelli, A.; Sans, C. Sunlight and UVC-254 irradiation induced photodegradation of organophosphorus pesticide dichlorvos in aqueous matrices. Sci. Total Environ. 2019, 649, 592-600.
https://doi.org/10.1016/j.scitotenv.2018.08.254

[7]. Baig, A.; Zubair, M.; Sumrra, S. H.; Rashid, U.; Zafar, M. N.; Ahmad, F.; Nazar, M. F.; Farid, M.; Bilal, M.; Alharthi, F. A.; Giannakoudakis, D. A. Green photosensitisers for the degradation of selected pesticides of high risk in most susceptible food: A safer approach. PLoS ONE. 2021, 16 (10), e0258864.
https://doi.org/10.1371/journal.pone.0258864

[8]. Ferhi, S.; Vieillard, J.; Garau, C.; Poultier, O.; Demey, L.; Beaulieu, R.; Penalva, P.; Gobert, V.; Portet-Koltalo, F. Pilot-scale direct UV-C photodegradation of pesticides in groundwater and recycled wastewater for agricultural use. J. Environ. Chem. Eng. 2021, 9 (5), 106120.
https://doi.org/10.1016/j.jece.2021.106120

[9]. Rashid, R.; Shafiq, I.; Gilani, M. R.; Maaz, M.; Akhter, P.; Hussain, M.; Jeong, K.; Kwon, E. E.; Bae, S.; Park, Y. Advancements in TiO2-based photocatalysis for environmental remediation: Strategies for enhancing visible-light-driven activity. Chemosphere. 2024, 349, 140703.
https://doi.org/10.1016/j.chemosphere.2023.140703

[10]. Ji, J.; Bao, Y.; Liu, X.; Zhang, J.; Xing, M. Molybdenum‐based heterogeneous catalysts for the control of environmental pollutants. EcoMat. 2021, 3 (6).
https://doi.org/10.1002/eom2.12155

[11]. Osumba, S. O.; Adongo, J. O.; Omolo, J. O. UV-visible-near-IR characterization of MoO3 catalyzed photodegradation of lambda-cyhalothrin pesticide. Chem. Pap. 2024, 78 (9), 5683-5695.
https://doi.org/10.1007/s11696-024-03513-3

[12]. Premalatha, N.; Rose Miranda, L. Surfactant modified ZnO-Bi2O3 nanocomposite for degradation of lambda- cyhalothrin pesticide in visible light: A study of reaction kinetics and intermediates. J. Environ. Manag. 2019, 246, 259-266.
https://doi.org/10.1016/j.jenvman.2019.05.155

[13]. Danjuma Sani, M.; Abbaraju, V. K.; Venugopal, N. Photocatalytic degradation and removal of type II pyrethroid pesticide (lambda-cyhalothrin) residue from wastewater using nanoceria for agricultural runoff application. J. Appl. Natural Sci. 2023, 15 (3), 1219-1229.
https://doi.org/10.31018/jans.v15i3.4809

[14]. Danjuma Sani, M.; Abbaraju, V. D.; Venugopal, N. V. Photocatalytic degradation of lambda cyhalothrin (pyrethroid) in wastewater using zinc oxide nanoparticle. Rayasan J. Chem. 2023, 16 (03), 1396-1402.
https://doi.org/10.31788/RJC.2023.1638318

[15]. Talam, S.; Karumuri, S. R.; Gunnam, N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnol. 2012, 2012, 1-6, 372505.
https://doi.org/10.5402/2012/372505

[16]. Mayerhöfer, T. G.; Pahlow, S.; Popp, J. The Bouguer‐Beer‐Lambert Law: Shining Light on the Obscure. ChemPhysChem. 2020, 21 (18), 2029-2046.
https://doi.org/10.1002/cphc.202000464

[17]. Xie, J.; Wang, P.; Liu, J.; Lv, X.; Jiang, D.; Sun, C. Photodegradation of lambda-cyhalothrin and cypermethrin in aqueous solution as affected by humic acid and/or copper: Intermediates and degradation pathways. Environ. Toxicol. Chem. 2011, 30 (11), 2440-2448.
https://doi.org/10.1002/etc.655

[18]. Saljooqi, A.; Shamspur, T.; Mostafavi, A. Synthesis and photocatalytic activity of porous ZnO stabilized by TiO2 and Fe3O4 nanoparticles: investigation of pesticide degradation reaction in water treatment. Environ Sci. Pollut. Res. 2020, 28 (8), 9146-9156.
https://doi.org/10.1007/s11356-020-11122-2

[19]. Jatoi, A. S.; Hashmi, Z.; Adriyani, R.; Yuniarto, A.; Mazari, S. A.; Akhter, F.; Mubarak, N. M. Recent trends and future challenges of pesticide removal techniques - A comprehensive review. J. Environ. Chem. Eng. 2021, 9 (4), 105571.
https://doi.org/10.1016/j.jece.2021.105571

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).